12,593 research outputs found

    Active Integrity Constraints and Revision Programming

    Full text link
    We study active integrity constraints and revision programming, two formalisms designed to describe integrity constraints on databases and to specify policies on preferred ways to enforce them. Unlike other more commonly accepted approaches, these two formalisms attempt to provide a declarative solution to the problem. However, the original semantics of founded repairs for active integrity constraints and justified revisions for revision programs differ. Our main goal is to establish a comprehensive framework of semantics for active integrity constraints, to find a parallel framework for revision programs, and to relate the two. By doing so, we demonstrate that the two formalisms proposed independently of each other and based on different intuitions when viewed within a broader semantic framework turn out to be notational variants of each other. That lends support to the adequacy of the semantics we develop for each of the formalisms as the foundation for a declarative approach to the problem of database update and repair. In the paper we also study computational properties of the semantics we consider and establish results concerned with the concept of the minimality of change and the invariance under the shifting transformation.Comment: 48 pages, 3 figure

    State-of-the-art on evolution and reactivity

    Get PDF
    This report starts by, in Chapter 1, outlining aspects of querying and updating resources on the Web and on the Semantic Web, including the development of query and update languages to be carried out within the Rewerse project. From this outline, it becomes clear that several existing research areas and topics are of interest for this work in Rewerse. In the remainder of this report we further present state of the art surveys in a selection of such areas and topics. More precisely: in Chapter 2 we give an overview of logics for reasoning about state change and updates; Chapter 3 is devoted to briefly describing existing update languages for the Web, and also for updating logic programs; in Chapter 4 event-condition-action rules, both in the context of active database systems and in the context of semistructured data, are surveyed; in Chapter 5 we give an overview of some relevant rule-based agents frameworks

    Coherent Integration of Databases by Abductive Logic Programming

    Full text link
    We introduce an abductive method for a coherent integration of independent data-sources. The idea is to compute a list of data-facts that should be inserted to the amalgamated database or retracted from it in order to restore its consistency. This method is implemented by an abductive solver, called Asystem, that applies SLDNFA-resolution on a meta-theory that relates different, possibly contradicting, input databases. We also give a pure model-theoretic analysis of the possible ways to `recover' consistent data from an inconsistent database in terms of those models of the database that exhibit as minimal inconsistent information as reasonably possible. This allows us to characterize the `recovered databases' in terms of the `preferred' (i.e., most consistent) models of the theory. The outcome is an abductive-based application that is sound and complete with respect to a corresponding model-based, preferential semantics, and -- to the best of our knowledge -- is more expressive (thus more general) than any other implementation of coherent integration of databases
    • …
    corecore