154,237 research outputs found

    Constructive Heuristics for the Minimum Labelling Spanning Tree Problem: a preliminary comparison

    Get PDF
    This report studies constructive heuristics for the minimum labelling spanning tree (MLST) problem. The purpose is to find a spanning tree that uses edges that are as similar as possible. Given an undirected labeled connected graph (i.e., with a label or color for each edge), the minimum labeling spanning tree problem seeks a spanning tree whose edges have the smallest possible number of distinct labels. The model can represent many real-world problems in telecommunication networks, electric networks, and multimodal transportation networks, among others, and the problem has been shown to be NP-complete even for complete graphs. A primary heuristic, named the maximum vertex covering algorithm has been proposed. Several versions of this constructive heuristic have been proposed to improve its efficiency. Here we describe the problem, review the literature and compare some variants of this algorithm

    On dynamic breadth-first search in external-memory

    Get PDF
    We provide the first non-trivial result on dynamic breadth-first search (BFS) in external-memory: For general sparse undirected graphs of initially nn nodes and O(n) edges and monotone update sequences of either Θ(n)\Theta(n) edge insertions or Θ(n)\Theta(n) edge deletions, we prove an amortized high-probability bound of O(n/B^{2/3}+\sort(n)\cdot \log B) I/Os per update. In contrast, the currently best approach for static BFS on sparse undirected graphs requires \Omega(n/B^{1/2}+\sort(n)) I/Os. 1998 ACM Subject Classification: F.2.2. Key words and phrases: External Memory, Dynamic Graph Algorithms, BFS, Randomization

    Weblogs in Higher Education - Why Do Students (Not) Blog?

    Get PDF
    Positive impacts on learning through blogging, such as active knowledge construction and reflective writing, have been reported. However, not many students use weblogs in informal contexts, even when appropriate facilities are offered by their universities. While motivations for blogging have been subject to empirical studies, little research has addressed the issue of why students choose not to blog. This paper presents an empirical study undertaken to gain insights into the decision making process of students when deciding whether to keep a blog or not. A better understanding of students' motivations for (not) blogging may help decision makers at universities in the process of selecting, introducing, and maintaining similar services. As informal learning gains increased recognition, results of this study can help to advance appropriate designs of informal learning contexts in Higher Education. The method of ethnographic decision tree modelling was applied in an empirical study conducted at the Vienna University of Technology, Austria. Since 2004, the university has been offering free weblog accounts for all students and staff members upon entering school, not bound to any course or exam. Qualitative, open interviews were held with 3 active bloggers, 3 former bloggers, and 3 non‑ bloggers to elicit their decision criteria. Decision tree models were developed out of the interviews. It turned out that the modelling worked best when splitting the decision process into two parts: one model representing decisions on whether to start a weblog at all, and a second model representing criteria on whether to continue with a weblog once it was set up. The models were tested for their validity through questionnaires developed out of the decision tree models. 30 questionnaires have been distributed to bloggers, former bloggers and non‑ bloggers. Results show that the main reasons for students not to keep a weblog include a preference for direct (online) communication, and concerns about the loss of privacy through blogging. Furthermore, the results indicate that intrinsic motivation factors keep students blogging, whereas stopping a weblog is mostly attributable to external factors

    A preservation theorem for theories without the tree property of the first kind

    Full text link
    We prove that the NTP1_1 property of a geometric theory TT is inherited by theories of lovely pairs and HH-structures associated to TT. We also provide a class of examples of nonsimple geometric NTP1_1 theories
    • 

    corecore