3 research outputs found

    Interference Mitigation Based on Radio Aware Channel Assignment for Wireless Mesh Networks

    Get PDF
    © 2018, Springer Science+Business Media, LLC, part of Springer Nature. An intricate network deployment for high demand users leads to simultaneous transmission in wireless mesh networks. Multiple radios are adapted to individual nodes for improving network performance and Quality of Service (QoS). However, whenever multiple radios are assigned to the same channel, co-located radio interference occurs, which poses a major drawback. This paper proposes a Radio aware Channel Assignment (Ra-CA) mechanism based on a direct graphical model for mitigation of interference in multi-radio multi-channel networks. Initially, the co-located radio interference is identified by classifying non-interfering links for simultaneous transmission in the network. Proposed channel assignment mechanism helps in allocating the minimal number of channels to the network that mitigate co-located radio interference. Performance analysis of the proposed Ra-CA strategy is carried out compared with other existing techniques, like Breadth First Search-Channel Assignment (BFS-CA) and Maximal Independent Set Channel Assignment (MaIS-CA), in multi-radio networks. Simulation results demonstrate that the proposed channel assignment scheme is more efficient compared to the existing ones, in terms of QoS parameters like, packet drop rate, packet delivery ratio, transmission delay and throughput

    Enhanced multichannel routing protocols in MANET

    Get PDF
    Utilising multiple non-overlapping channels in MANET networking can improve performance and capacity. Most multichannel MAC and routing protocols rely on an extra radio interface, a common control channel or time synchronisation to support channel selection and routing, but only at the expense of hardware and power consumption costs. This thesis considers an alternative type of multichannel wireless network where each node has a single half-duplex radio interface and does not rely on a common control channel or time synchronisation. Multichannel MAC and routing protocols that adopt the Receiver Directed Transmission (RDT) communication scheme are investigated to assess their ability to implement a multichannel MANET. A novel multipath multichannel routing protocol called RMMMC is proposed to enhance reliability and fault-tolerance in the MANET. RMMMC introduces new route discovery and recovery processes. The former establishes multiple node and channel disjointed paths in different channels and accumulates them to acquire a full multi-hop path to each destination. The latter detects broken links and repairs them using pre-discovered backup routes. To enhance communication reliability, a novel cross-layer multichannel MAC mechanism called RIVC is proposed. It mitigates transmitting/rerouting data packets to a node that does not have an updated route information towards a destination and only allows data packets with valid routes to occupy the medium. The optional access mode in the MAC protocol is modified to early detect invalid routes at intermediate nodes and switchover to an alternative path. A new cross-layer multichannel MAC mechanism called MB is proposed to reduce contention in a busy channel and enhance load balancing. MB modifies the MAC back-off algorithm to let a transmitter node invoke an alternative path in the alternative channel when the retry count threshold is reached. The proposed multichannel protocols are implemented and evaluated by extensive NS2 simulation studies
    corecore