4 research outputs found

    Route discovery based on energy-distance aware routing scheme for MANET

    Get PDF
    Route discovery proses in a Mobile Ad hoc Network (MANET) is challenging due to the limitation of energy at each network node. The energy constraint limits network connection lifetime thus affecting the routing process. Therefore, it is necessary for each node in the network to calculate routing factor in terms of energy and distance in deciding optimal candidate relay nodes needed to forward packets. This study proposes a new route discovery mechanism called the Energy-Distance Routing Aware (EDRA) that determines the selection of nodes during route discovery process to improve the network connection lifetime. This mechanism comprises of three schemes namely the Energy-Distance Factor Aware (EDFA), the Energy-Distance Forward Strategy (EDFS), and the Energy-Aware Route Selection (EARS). The EDFA scheme begins by calculating each nodes energy level (ei) and the distance (di) to the neighbouring nodes to produce the energy-distance factor value used in selecting the relay nodes. Next, the EDFS scheme forwards route request packets within discovery area of relay nodes based on the number of nodes. Then, the EARS scheme selects stable routing path utilising updated status information from EDFA and EDFS. The evaluation of EDRA mechanism is performed using network simulator Ns2 based on a defined set of performance metrics, scenarios and network scalability. The experimental results show that the EDRA gains significant improvement in the network connection lifetime when compared to those of the similar mechanisms, namely the AODV and the DREAM. EDRA also optimises energy consumption by utilising efficient forwarding decisions on varying scale of network nodes. Moreover, EDRA maximizes network connection lifetime while preserving throughput and packet drop ratio. This study contributes toward developing an efficient energy-aware routing to sustain longer network connection lifetime in MANET environment. The contribution is significant in promoting the use of green and sustainable next generation network technology

    GSAR: Greedy Stand-Alone Position-Based Routing protocol to avoid hole problem occurance in Mobile Ad Hoc Networks

    Get PDF
    The routing process in a Mobile Ad Hoc Network (MANET) poses critical challenges because of its features such as frequent topology changes and resource limitations. Hence, designing a reliable and dynamic routing protocol that satisfies MANET requirements is highly demanded. The Greedy Forwarding Strategy (GFS) has been the most used strategy in position-based routing protocols. The GFS algorithm was designed as a high-performance protocol that adopts hop count in soliciting shortest path. However, the GFS does not consider MANET needs and is therefore insufficient in computing reliable routes. Hence, this study aims to improve the existing GFS by transforming it into a dynamic stand-alone routing protocol that responds swiftly to MANET needs, and provides reliable routes among the communicating nodes. To achieve the aim, two mechanisms were proposed as extensions to the current GFS, namely the Dynamic Beaconing Updates Mechanism (DBUM) and the Dynamic and Reactive Reliability Estimation with Selective Metrics Mechanism (DRESM). The DBUM algorithm is mainly responsible for providing a node with up-to-date status information about its neighbours. The DRESM algorithm is responsible for making forwarding decisions based on multiple routing metrics. Both mechanisms were integrated into the conventional GFS to form Greedy Stand-Alone Routing (GSAR) protocol. Evaluations of GSAR were performed using network simulator Ns2 based upon a defined set of performance metrics, scenarios and topologies. The results demonstrate that GSAR eliminates recovery mode mechanism in GFS and consequently improve overall network performance. Under various mobility conditions, GSAR avoids hole problem by about 87% and 79% over Greedy Perimeter Stateless Routing and Position-based Opportunistic Routing Protocol respectively. Therefore, the GSAR protocol is a reasonable alternative to position-based unicast routing protocol in MANET

    Review of location-aware routing protocols

    No full text
    Routing for ad-hoc wireless network is challenging, many routing strategies have been proposed in literature. With the availability of affordable Global Position System equipped devices, location-aware routing provides a promising foundation for developing an efficient and practical solution for routing in ad-hoc wireless network. Current geographic forwarding strategies and geographic routing protocols are reviewed in this paper. Limitations and factors affecting geographic routing protocols are discussed. The review provides a classification of the protocols based on the approaches used for handling routing around local minima and a comprehensive comparison of the protocols. Challenges of implementing location-aware routing in ad-hoc network are identified and discussed. Further research attempting to find an appropriate solution to route around local minima is suggested

    Review of Location-Aware Routing Protocols

    No full text
    corecore