5 research outputs found

    The Numbers Game: Statistical Inference in Discrimination Cases

    Get PDF
    A Review of Statistical Proof of Discrimination by David Baldus and James Col

    Reconstruction of anisoplanatic adaptive optics images

    Get PDF

    Latent Print Examination and Human Factors: Improving the Practice Through a Systems Approach: The Report of the Expert Working Group on Human Factors in Latent Print Analysis

    Get PDF
    Fingerprints have provided a valuable method of personal identification in forensic science and criminal investigations for more than 100 years. Fingerprints left at crime scenes generally are latent prints—unintentional reproductions of the arrangement of ridges on the skin made by the transfer of materials (such as amino acids, proteins, polypeptides, and salts) to a surface. Palms and the soles of feet also have friction ridge skin that can leave latent prints. The examination of a latent print consists of a series of steps involving a comparison of the latent print to a known (or exemplar) print. Courts have accepted latent print evidence for the past century. However, several high-profile cases in the United States and abroad have highlighted the fact that human errors can occur, and litigation and expressions of concern over the evidentiary reliability of latent print examinations and other forensic identification procedures has increased in the last decade. “Human factors” issues can arise in any experience- and judgment-based analytical process such as latent print examination. Inadequate training, extraneous knowledge about the suspects in the case or other matters, poor judgment, health problems, limitations of vision, complex technology, and stress are but a few factors that can contribute to errors. A lack of standards or quality control, poor management, insufficient resources, and substandard working conditions constitute other potentially contributing factors

    On the convergence of the phase gradient autofocus algorithm for synthetic aperture radar imaging

    Full text link
    corecore