70,550 research outputs found

    Distributed multinomial regression

    Full text link
    This article introduces a model-based approach to distributed computing for multinomial logistic (softmax) regression. We treat counts for each response category as independent Poisson regressions via plug-in estimates for fixed effects shared across categories. The work is driven by the high-dimensional-response multinomial models that are used in analysis of a large number of random counts. Our motivating applications are in text analysis, where documents are tokenized and the token counts are modeled as arising from a multinomial dependent upon document attributes. We estimate such models for a publicly available data set of reviews from Yelp, with text regressed onto a large set of explanatory variables (user, business, and rating information). The fitted models serve as a basis for exploring the connection between words and variables of interest, for reducing dimension into supervised factor scores, and for prediction. We argue that the approach herein provides an attractive option for social scientists and other text analysts who wish to bring familiar regression tools to bear on text data.Comment: Published at http://dx.doi.org/10.1214/15-AOAS831 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Sensor-AssistedWeighted Average Ensemble Model for Detecting Major Depressive Disorder

    Get PDF
    The present methods of diagnosing depression are entirely dependent on self-report ratings or clinical interviews. Those traditional methods are subjective, where the individual may or may not be answering genuinely to questions. In this paper, the data has been collected using self-report ratings and also using electronic smartwatches. This study aims to develop a weighted average ensemble machine learning model to predict major depressive disorder (MDD) with superior accuracy. The data has been pre-processed and the essential features have been selected using a correlation-based feature selection method. With the selected features, machine learning approaches such as Logistic Regression, Random Forest, and the proposedWeighted Average Ensemble Model are applied. Further, for assessing the performance of the proposed model, the Area under the Receiver Optimization Characteristic Curves has been used. The results demonstrate that the proposed Weighted Average Ensemble model performs with better accuracy than the Logistic Regression and the Random Forest approaches

    The supervised hierarchical Dirichlet process

    Full text link
    We propose the supervised hierarchical Dirichlet process (sHDP), a nonparametric generative model for the joint distribution of a group of observations and a response variable directly associated with that whole group. We compare the sHDP with another leading method for regression on grouped data, the supervised latent Dirichlet allocation (sLDA) model. We evaluate our method on two real-world classification problems and two real-world regression problems. Bayesian nonparametric regression models based on the Dirichlet process, such as the Dirichlet process-generalised linear models (DP-GLM) have previously been explored; these models allow flexibility in modelling nonlinear relationships. However, until now, Hierarchical Dirichlet Process (HDP) mixtures have not seen significant use in supervised problems with grouped data since a straightforward application of the HDP on the grouped data results in learnt clusters that are not predictive of the responses. The sHDP solves this problem by allowing for clusters to be learnt jointly from the group structure and from the label assigned to each group.Comment: 14 page
    • …
    corecore