4 research outputs found

    Methods of Reverse Engineering a Bitstream for Field Programmable Gate Array Protection

    Get PDF
    Field Programmable Gate Arrays (FPGAs) are found in numerous industries including consumer electronics, automotive, military and aerospace, and critical infrastructure. The ability to be reprogrammed as well as large computational power and relatively low price make them a good fit for low-volume applications that cannot justify the Non-Recurring Engineering (NRE) costs associated with producing Application-Specific Integrated Circuits (ASICs). FPGAs however, have seen a variety of security issues stemming from the fact that their configuration files are not inherently protected. This research assesses the feasibility of reverse engineering the bitstream format for a previously unexplored FPGA, as well as the utilization of the knowledge gained during that process to create a bitstream parser and perform a bitstream modification attack. The reverse engineering process utilizes Tool Command Language (TCL) scripts to automate the modification of various configuration options and then synthesize the resulting bitstream. Various configuration options for Input/Output Blocks (IOBs) are mapped to their respective locations in the bitstream and the encoding format for the configuration of several Look-Up Tables (LUTs) is discovered. This information is then utilized to create a bitstream parser that takes a bitstream as an input and outputs configuration information for IOBs. Additionally, a bitstream modification attack is performed that changes the original design logic by modifying the bitstream directly to change the configuration values of a LUT. Both the parser and bitstream modification attack are shown to work validating the information gained through the reverse engineering process

    Air Force Institute of Technology Research Report 2018

    Get PDF
    This Research Report presents the FY18 research statistics and contributions of the Graduate School of Engineering and Management (EN) at AFIT. AFIT research interests and faculty expertise cover a broad spectrum of technical areas related to USAF needs, as reflected by the range of topics addressed in the faculty and student publications listed in this report. In most cases, the research work reported herein is directly sponsored by one or more USAF or DOD agencies. AFIT welcomes the opportunity to conduct research on additional topics of interest to the USAF, DOD, and other federal organizations when adequate manpower and financial resources are available and/or provided by a sponsor. In addition, AFIT provides research collaboration and technology transfer benefits to the public through Cooperative Research and Development Agreements (CRADAs). Interested individuals may discuss ideas for new research collaborations, potential CRADAs, or research proposals with individual faculty using the contact information in this document

    Reversing a Lattice ECP3 FPGA for Bitstream Protection

    No full text
    Part 2: Infrastructure ProtectionInternational audienceField programmable gate arrays are used in nearly every industry, including consumer electronics, automotive, military and aerospace, and the critical infrastructure. The reprogrammability of field programmable gate arrays, their computational power and relatively low price make them a good fit for low-volume applications that cannot justify the non-recurring engineering costs of application-specific integrated circuits. However, field programmable gate arrays have security issues that stem from the fact that their configuration files are not protected in a satisfactory manner. Although major vendors offer some sort of encryption, researchers have demonstrated that the encryption can be overcome. The security problems are a concern because field programmable gate arrays are widely used in industrial control systems across the critical infrastructure. This chapter explores the reverse engineering process of a Lattice Semiconductor ECP3 field programmable gate array configuration file in order to assist infrastructure owners and operators in recognizing and mitigating potential threats

    Air Force Institute of Technology Research Report 2019

    Get PDF
    This Research Report presents the FY19 research statistics and contributions of the Graduate School of Engineering and Management (EN) at AFIT. AFIT research interests and faculty expertise cover a broad spectrum of technical areas related to USAF needs, as reflected by the range of topics addressed in the faculty and student publications listed in this report. In most cases, the research work reported herein is directly sponsored by one or more USAF or DOD agencies. AFIT welcomes the opportunity to conduct research on additional topics of interest to the USAF, DOD, and other federal organizations when adequate manpower and financial resources are available and/or provided by a sponsor. In addition, AFIT provides research collaboration and technology transfer benefits to the public through Cooperative Research and Development Agreements (CRADAs). Interested individuals may discuss ideas for new research collaborations, potential CRADAs, or research proposals with individual faculty using the contact information in this document
    corecore