486 research outputs found

    Mining structured Petri nets for the visualization of process behavior

    Get PDF
    Visualization is essential for understanding the models obtained by process mining. Clear and efficient visual representations make the embedded information more accessible and analyzable. This work presents a novel approach for generating process models with structural properties that induce visually friendly layouts. Rather than generating a single model that captures all behaviors, a set of Petri net models is delivered, each one covering a subset of traces of the log. The models are mined by extracting slices of labelled transition systems with specific properties from the complete state space produced by the process logs. In most cases, few Petri nets are sufficient to cover a significant part of the behavior produced by the log.Peer ReviewedPostprint (author's final draft

    Causal Reversibility in Individual Token Interpretation of Petri Nets

    Get PDF
    Causal reversibility in concurrent systems means that events that the origin of other events can only be undone after undoing of its consequences. In opposite to backtracking, the events which are independent of each other can be reversed in an arbitrary order, in the other words, we have flexible reversibility w.r.t the causality relation. An implementation of Individual token interpretation ofPetri Nets (IPNs) was been proposed by Rob Van Glabbeek et al, the present paper investigates into a study of causal reversibility within IPNs. Given N be an IPN, by adding an intuitive firing rule to undo transitions according to the causality relation, the coherence of N is assured, i.e., the set of all reachable states of N in the reversible version and that of the original one are identical. Furthermore, reversibility in N is flexible and their initial state can be accessible in reverse from any state. In this paper an approach for controllingcausal-reversibility within IPNs is proposed

    Reachability Analysis of Communicating Pushdown Systems

    Full text link
    The reachability analysis of recursive programs that communicate asynchronously over reliable FIFO channels calls for restrictions to ensure decidability. Our first result characterizes communication topologies with a decidable reachability problem restricted to eager runs (i.e., runs where messages are either received immediately after being sent, or never received). The problem is EXPTIME-complete in the decidable case. The second result is a doubly exponential time algorithm for bounded context analysis in this setting, together with a matching lower bound. Both results extend and improve previous work from La Torre et al

    A Logic with Reverse Modalities for History-preserving Bisimulations

    Full text link
    We introduce event identifier logic (EIL) which extends Hennessy-Milner logic by the addition of (1) reverse as well as forward modalities, and (2) identifiers to keep track of events. We show that this logic corresponds to hereditary history-preserving (HH) bisimulation equivalence within a particular true-concurrency model, namely stable configuration structures. We furthermore show how natural sublogics of EIL correspond to coarser equivalences. In particular we provide logical characterisations of weak history-preserving (WH) and history-preserving (H) bisimulation. Logics corresponding to HH and H bisimulation have been given previously, but not to WH bisimulation (when autoconcurrency is allowed), as far as we are aware. We also present characteristic formulas which characterise individual structures with respect to history-preserving equivalences.Comment: In Proceedings EXPRESS 2011, arXiv:1108.407

    Reverse Bisimulations on Stable Configuration Structures

    Full text link
    The relationships between various equivalences on configuration structures, including interleaving bisimulation (IB), step bisimulation (SB) and hereditary history-preserving (HH) bisimulation, have been investigated by van Glabbeek and Goltz (and later Fecher). Since HH bisimulation may be characterised by the use of reverse as well as forward transitions, it is of interest to investigate forms of IB and SB where both forward and reverse transitions are allowed. We give various characterisations of reverse SB, showing that forward steps do not add extra power. We strengthen Bednarczyk's result that, in the absence of auto-concurrency, reverse IB is as strong as HH bisimulation, by showing that we need only exclude auto-concurrent events at the same depth in the configuration

    A Petri net view of covalent bonds

    Get PDF
    In nature and chemistry the interactions among elements often form bonds and among them covalent bonds are relevant, involving the sharing of electrons. Another relevant and compelling facet of calculi modelling covalent bonds is that certain steps in reactions are the result of concerting different activities, possibly reversing some of them. Starting from a calculus for covalent bonds, we investigate on how it can be done in a compositional fashion and how it can be encoded in suitable Petri nets. The outcome gives us a compositional covalent bond calculus and a truly distributed implementation. On these results it is possible to build a behavioural equivalence among terms.Fil: Melgratti, Hernan Claudio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Mezzina, Claudio Antares. Università Degli Studi Di Urbino Carlo Bo; ItaliaFil: Pinna, G. Michele. Università degli Studi di Cagliari; Itali

    Decidable Models of Recursive Asynchronous Concurrency

    Full text link
    Asynchronously communicating pushdown systems (ACPS) that satisfy the empty-stack constraint (a pushdown process may receive only when its stack is empty) are a popular decidable model for recursive programs with asynchronous atomic procedure calls. We study a relaxation of the empty-stack constraint for ACPS that permits concurrency and communication actions at any stack height, called the shaped stack constraint, thus enabling a larger class of concurrent programs to be modelled. We establish a close connection between ACPS with shaped stacks and a novel extension of Petri nets: Nets with Nested Coloured Tokens (NNCTs). Tokens in NNCTs are of two types: simple and complex. Complex tokens carry an arbitrary number of coloured tokens. The rules of NNCT can synchronise complex and simple tokens, inject coloured tokens into a complex token, and eject all tokens of a specified set of colours to predefined places. We show that the coverability problem for NNCTs is Tower-complete. To our knowledge, NNCT is the first extension of Petri nets, in the class of nets with an infinite set of token types, that has primitive recursive coverability. This result implies Tower-completeness of coverability for ACPS with shaped stacks
    corecore