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In nature and chemistry the interactions among elements often form bonds and among

them covalent bonds are relevant, involving the sharing of electrons. Another relevant and

compelling facet of calculi modelling covalent bonds is that certain steps in reactions are

the result of concerting different activities, possibly reversing some of them. Starting from

a calculus for covalent bonds, we investigate on how it can be done in a compositional

fashion and how it can be encoded in suitable Petri nets. The outcome gives us a

compositional covalent bond calculus and a truly distributed implementation. On these

results it is possible to build a behavioural equivalence among terms.

 2022 Elsevier B.V. All rights reserved.

1. Introduction

The study of biochemical reactions as computational processes started with the seminal paper of the Chemical Abstract

Machine (CHAM) [1]. In the sequel, several formal languages tailored to the modelling of biochemical reactions have been

proposed in the literature [2–9]. Typically, those languages allow for the description of processes concerning the formation

of chemical bonds, i.e., the linkage between atoms, molecules and ions that produce chemical compounds. As an example,

consider the catalysed reaction for the hydration of formaldehyde in water depicted in Fig. 1 in which two molecules A

and B bond together via a catalyser C . Firstly, each of the molecules A and B bonds with the catalyser C (depicted as arcs

labelled by c and d). After that, A and B bond together (arc labelled by q) and, at the same, the existing bond c is broken.

Finally, the bond d between B and C is broken; which releases C for serving as catalyser for another reaction.

In computational terms, the transformations in Fig. 1 can be thought of as different nature: the first one creates bonds,

the last one undoes a previously created bond, and the second one mixes the creation of a new bond with the undoing

of a previously created bond. Hence, the underlying computational model can be seen as a reversible model, i.e., one that

features two flows of execution: a forward (normal) one and a backward one that undoes the effects of previously executed

actions. Some models for biochemical processes are built upon this observation [10,8]. In this paper we focus on the Calculus

of Covalent Bonding (CCB) [8], which embodies a reversible model with very distinctive features. Differently from most of

the reversible process calculi in the literature [11–14], a computation step in CCB may combine forward and backward

flows: Thanks to the so called concerted actions, a single reduction step in CCB can simultaneously create a bond and

break an existing one, akin to the second transformation in Fig. 1. Moreover, CCB enjoys some form of out-of-causal order

reversibility [15], i.e., a process may exploit backward computation to reach states that cannot be reached by relying only

on forward computation. As an example, consider the scenario introduced in Fig. 1 and assume that A and B cannot bond
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Fig. 1. A catalytic reaction (borrowed from [8]).

together without the participation of C . Consequently, the final state in Fig. 1 is only reachable because of the undoing of

some previous forward steps (i.e., the breaking of the bonds c and d created in first step).

Interestingly, the distinguishing features of CCB are obtained via some not-so-standard ingredients in the operational

semantics of the language; namely, the lookahead mechanism for concerted actions and the need of assigning priority to

the reductions that exchange bonds within prefixes. Consequently, it becomes natural to ask whether the essential features

of CCB can be explained by recasting to standard computational models. In this paper we provide an affirmative answer

to that question by exploiting some recent results that show that Petri nets with inhibitor arcs can provide a unifying

presentation for different reversible models [16–18]. As a by-product, our study sheds lights about some interesting aspects

in the definition of CCB as, for instance, the fact that its semantics is non-compositional, and that it allows for the formation

of bonds among an unbounded number of components.

Concretely, we introduce a variant of CCB that retains the intuitions, motivations and most of the capabilities of the

original calculus, but has compositional semantics and avoids lookahead and priorities. For technical simplicity, we restrict

our analysis to the fragment of binary bonds, i.e., we consider synchronisation algebras that only allow for bonds formed

between exactly two components. Despite this choice reduces the synchronisation capabilities of the calculus, we remark

that all case studies in [8] lay within this fragment.

Then, we show that each term of the calculus can be encoded into a behavioural equivalent (i.e., bisimilar) Petri net.

Alike previous approaches aimed at expressing reversibility in Petri nets, our encoding needs to ensure that each marking

of a net conveys sufficient information to enable exactly those admissible forward and backward computations, which is

particularly challenging when dealing with out-of-causal order reversibility [19]. Here, we rely on [17] to accommodate

out-of-causal order reversibility by representing causality in terms of inhibitor arcs. Another key ingredient of our encoding

concerns the static representation of bonds, which are dynamically generated in CCB. We first note that bonds play the role

of the communication keys present in some reversible calculi [11]. As done in [18], we represent dynamically generated

communication keys with statically designated places of a net. This allows us to show that a proper subclass of Petri nets

with inhibitor arcs, dubbed covalent bond nets, is expressive enough for encoding CCB terms.

Besides showing that the essential features of CCB can be obtained without appealing to mechanisms such as the fresh

generation of keys, lookahead of computation steps or prioritised reductions, our encoding paves the way for the application

of consolidated analysis techniques that have been developed for Petri nets for decades.

Our contribution is structured as follows: We introduce CCB and illustrates its applicability in Section 2; we revise the

original semantics of CCB in Section 3 in order to have compositional semantics. After recalling the standard notion of Petri

nets with inhibitor arcs (Section 4), we introduce covalent bond nets (cbn) (Section 5), which are a proper subclass of Petri

nets with inhibitor arcs that corresponds to CCB terms. The encoding of CCB into cbn is presented in Section 6. The and

finally state our main result in terms of an operational correspondence between the encoding and the compositional CCB.
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Notation

We recall some useful notions that will be used throughout this paper. N denotes the set of natural numbers. A multiset

over a set A is a function m : A → N . A multiset m will be often written by listing its elements separated by a comma,

for instance the multiset m such that m(a) = 2,m(b) = 1 and m(x) = 0 for any other x ∈ A different from a or b will be

a,a,b. We assume multisets to be equipped with the usual operations of union (+) and difference (−), and write m ⊆ m′

if m(a) ≤ m′(a) for all a ∈ A. We often confuse a multiset m with the set {a ∈ A | m(a) 6= 0} when ∀a ∈ A.m(a) ≤ 1. In

such cases, we write a ∈ m instead of m(a) 6= 0, and m ⊆ A if m(a) = 1 implies a ∈ A. Furthermore, we will use standard

operations on sets, such as ∩, ∪ or \. The set of all multisets over A is denoted by µA. The multiset m where for each

2
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α ::= (r;b)

S ::= α.S | 0

P ::= S | P ‖ P | P \ L

Fig. 2. CCB process syntax.

a ∈ A it holds that m(a) = 0 is the empty multiset and, with abuse of notation, we write ∅ for it. As usual, given a ∈ A, we

write a also for the singleton {a}.

2. The calculus of covalent bonding

In this section we report the finite part of the Calculus of Covalent Bonding [31,8], CCB for short. CCB is a reversible,

concurrent calculus tailored to the modelling of biochemical reactions.

The set of CCB actions A= {a,b,c, . . .} is partitioned into strong and weak actions that respectively belongs to S and W.

In what follows we shall write some actions in italics, e.g., a,b, c, . . ., to emphasise that they are weak. The syntax of finite

CCB is in Fig. 2.

All operators but the shape of prefixes α are standard. As usual, 0 represents the idle process, α.S stands for a process

prefixed by α, and P ‖ Q represents the parallel composition of P and Q, i.e., the processes P and Q can either execute

independently or synchronise with each other during computation. The hiding operator P \ L controls the scope of actions

in a process, i.e., P \ L behaves as P except for the fact that it cannot perform any action belonging to the set of actions

L ⊆A.

A prefix (r;b) consists of a finite multiset of actions r and a weak action b, which are respectively called strong and weak

(part of the) prefix. Intuitively, the optional weak action b becomes enabled only after all actions in r have been performed;

the order in which actions in s are executed is irrelevant. It is assumed that r is not empty and at most one of its actions

can be weak, i.e., r ∈ NA ∪W− ∅ and for all b, c ∈ W if r(b) > 0 and r(c) > 0 then b = c and r(b) = 1. Additionally, b can

sometimes be omitted, and we will write prefixes simply as (r).S.

Example 1. We now illustrate strong and weak prefixes. Suppose a,b ∈ S to be two strong actions and c ∈ W a weak one.

Then, the prefix (a,b; c) is such that the multiset a,b is the strong (part of the) prefix and the action c is the weak (part of

the) prefix. Intuitively, the actions in the strong prefix a,b can be performed in any order, while the weak prefix c can occur

only after a and b. The prefix (a,b, c) has instead the multiset a,b, c as its strong part and its weak part has been omitted.

In this case, the prefix does not impose any order on the execution of the actions: the weak action c in the strong prefix

can be performed even before the strong actions a and b. The distinction between weak and strong actions concerns to the

capability of moving bonds between actions, which will be made clear when presenting the semantics of the language.

A distinctive feature of the introduced prefixes (r;b) is that the execution of the weak prefix b forces the process to

undo some previously executed action.

The reversibility mechanism of CCB is modelled via communication keys [11]. Let K = {k, l,m,n, . . .} be the set of

communication keys. Then, the set of performed actions is defined as A × K. Hereafter, we write a[k] for the performed

action (a,k).

The runtime syntax of the calculus is obtained by extending prefixes as follows

α ::= . . . | (s;β)

with s ∈ N(A×K)∪A . We let t, t′, . . . range over NA×K; and β,β ′ to range over N(W×K)∪W .

Before defining the set of free names and bound names of a process, we need to define the set of names of a multiset

possibly marked with keys. We indicate such a set with n(s) and we define it as follows:

n(a, s) = n(a[k], s) = {a} ∪ n(s) n(∅) = ∅

The set of free names and bound names of a process P , denoted respectively as fn(P) and bn(P), are inductively defined as

follows

fn((s;β).P)= n(s, β) ∪ fn(P) fn(P ‖ Q)= fn(P)∪fn(Q)

fn(P \ L)= fn(P) \ L fn(0)= ∅

bn((s;β).P)= bn(P) bn(P ‖ Q)= bn(P) ∪ bn(Q)

bn(P \ L)= bn(P) ∪ L bn(0)= ∅

The following notions are instrumental to the definition of the operational semantics of the calculus.

Definition 1. The multiset of keys of a multiset of actions s, written key(s) is defined by

key(∅) = ∅ key(a[k], s′) = {k} + key(s′) key(a, s′) = key(s′)

3
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(act1)
std(S) fresh(k, s)

(a, s;b).S
a[k]
−−→ (a[k], s;b).S

(act2)
S

a[k]
−−→ S

′ fresh(k, t)

(t;b).S
a[k]
−−→ (t;b).S′

(w-act1)
std(S) fresh(k, t)

(t;b).S
(b)[k]
−−−→ (t;b[k]).S

(w-act2)
S

(b)[k]
−−−→ S

′ fresh(k, t)

(t;a).S′ (b)[k]
−−−→ (t;a).S′

(par)
P

a[k]
−−→ P

′ fresh(k,Q)

P ‖ Q
a[k]
−−→ P

′ ‖ Q

(com)
P

a[k]
−−→ P

′
Q

b[k]
−−→ Q

′

P ‖ Q
γ (a,b)[k]
−−−−−→ P

′ ‖ Q′

(res)
P

a[k]
−−→ P

′

P \ L
a[k]
−−→ P

′ \ L

a /∈ L

Fig. 3. Forward SOS rules.

The set of keys of a process P, written key(P), is inductively defined as follows:

key((s;β).P)= key(s, β) ∪ key(P) key(0)= ∅

key(P ‖ Q)= key(P) ∪ key(Q) key(P \ L)= key(P)

Definition 2. A key k is fresh in a process P (resp., in a multiset of actions s) written fresh(k,P) (resp. fresh(k, s)) if k ∩

key(P) = ∅ (resp., k ∩ key(s) = ∅).

Terms are considered up-to the structural congruence ≡, i.e., the least congruence defined such that ‖ is associative and

commutative with identity 0 and satisfies the following rule

P \ L ‖ Q≡ (P ‖ Q) \ L if f n(Q) ∩ L = ∅

The operational semantics of the forward flow of the computation is defined by the inference rules in Fig. 3.

Rule act1 mimics forward rules of reversible calculi based on communication keys: if a prefix contains an unperformed

action a, then such action is executed by assigning a fresh key k to it. The chosen key is reflected in the label a[k] and the

continuation records that a has been already executed with key k. Rule act2 states that a computation can proceed under a

prefix only when the multiset of actions in the prefix has been already executed (recall that t ∈ NA×K). Rule par accounts

for the execution of a forward action by one of the processes in a parallel composition; this is possible only when the

assigned key k has not been used in Q. The synchronisation of actions in concurrent processes is described by Rule com. The

communication model follows ACP [32], in which a symmetric, binary, partial function γ : A×A → A defines the allowed

interactions, e.g., two actions a and b synchronise if and only if γ (a,b) is defined. Moreover, their interaction is described

by the action γ (a,b). Hence, the rule com states that two concurrent processes interact if: (i) they execute synchronisable

actions according to γ and (ii) the processes agree on the communication key k assigned to the actions. Rule res states

that a process cannot perform a restricted action; this also includes the cases in which the restricted action is consequence

of the synchronisation of two actions. For instance, the process ((a;b).0 ‖ (a;b).0) \ {c} is blocked if γ (a,a) = c. The two

rules w-aux1 and w-aux2 describe the executions of weak prefixes. Rule w-aux1 accounts for the execution of the weak

prefix b, which is allowed only if the continuation P has not been started. The execution of the action b is associated with a

fresh key (as for any action in a prefix), however the parenthesis in the label (i.e., (b) instead of b) reflects that b has been

executed as part of a weak prefix. Rule aux2 accounts for the execution of a weak prefix below a prefix, which is analogous

to the rule act2. Note that the label (b) forbids the application of rule com, hence synchronisations involving labels like (b)

are prohibited.

Note that the operational rules allow for non-binary interactions. Consider (a;b).S1 ‖ (a;b).S2 ‖ (a;b).S3 and γ defined

such that γ (a,a) = a. Then, a 3-way synchronisation is possible as shown below:

std(S1)

(a;b).S1
a[k]
−−→ (a[k];b).S1

std(S2)

(a;b).S2
a[k]
−−→ (a[k];b).S2

(a;b).S1 ‖ (a;b).S2
a[k]
−−→ (a[k];b).S1 ‖ (a[k];b).S2

std(S3)

(a;b).S3
a[k]
−−→ (a[k];b).S3

(a;b).S1 ‖ (a;b).S2 ‖ (a;b).S3
a[k]
−−→ (a[k];b).S1 ‖ (a[k];b).S2 ‖ (a[k];b).S3

For technical simplicity in the following sections, we restrict our attention to binary synchronisations, i.e., hereafter we

just consider synchronisation functions γ defined such that an action in the image of γ does not enable further synchroni-

sations.

∀a,b,c ∈ A.γ (a,b) = c implies ∀d ∈A.γ (c,d) undefined

4



ARTICLE IN PRESS
JID:TCS AID:13224 /FLA Doctopic: Theory of natural computing [m3G; v1.312] P.5 (1-31)

H. Melgratti, C.A. Mezzina and G.M. Pinna Theoretical Computer Science ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

(act1)
std(S)

(a[k], s;β).S
a[k]
−−→ (a, s;β).S

β ∈ {b,b[l]} (act2)
S

a[k]
−−→ S

′

(t;b).S′ a[k]
−−→ (t;b).S′

(par)
P

a[k]
−−→ P

′ fresh(k,Q)

P ‖ Q
a[k]
−−→ P

′ ‖ Q

(com)
P

a[k]
−−→ P

′
Q

b[k]
−−→ Q

′

P ‖ Q
γ (a,b)[k]
−−−−−→ P

′ ‖ Q′

(res)
P

a[k]
−−→ P

′

P \ L
a[k]
−−→ P

′ \ L

a /∈ L

Fig. 4. Backward SOS rules.

(concert)
P

(b)[k]
−−−→ P

′
P

′ a[l]
−−→ P

′′
Q

α[k]
−−→ Q

′
Q

′ d[l]
−−→ Q

′′

P ‖ Q
{γ (b,c)[k],γ (a,d)[l]}
−−−−−−−−−−−−→ P

′′ ‖ Q′′

α ∈ {c, (c)} (concert act)
P

{c[k],a[l]}
−−−−−→ P

′ fresh(k, t)

(t;b).P
{c[k],a[l]}
−−−−−→ (t;b).P′

(concert par)
P

{c[k],a[l]}
−−−−−→ P

′ fresh(k,Q) fresh(l,Q)

P ‖ Q
{c[k],a[l]}
−−−−−→ P

′ ‖ Q

(concert res)
P

{c[k],a[l]}
−−−−−→ P

′

P \ L
{c[k],a[l]}

−−−−−→ P
′ \ L

a, c /∈ L

Fig. 5. Concerted SOS rules.

Despite our development does not depend on the following assumption, we will only consider synchronisation functions

such that dom(γ ) ⊆ (W × W) ∪ (S × S) to forbid mixed synchronisations between strong and weak actions. It should be

noted that the forward flow does not allow for synchronisation of a weak action b in a prefix of the form (t;b). Such

weak action will come to play in combination with the reversing mechanism of actions. To that aim, we assume that every

action a is associated with a reversing action a and write A for the set of reversible actions, i.e., A = {a | a ∈ A}. Then, a

backward/reversing step in a computation will be represented by a label of the form A×K, which will be written as a[k]

instead of (a,k). Backward transitions are given by the inference rules in Fig. 4. It should be notice that each forward rule

in Fig. 3 is paired with a backward version that undoes the computation step. The rules are self-explanatory. Differently

from the original presentation of CCB, we write rule act1 to make explicit that it can be applied regardless of whether the

weak prefix has been already executed or not, i.e., we write β ∈ {b,b[k]} instead of just b (disallowing b[k] makes concerted

rules inapplicable as discussed in the following).

The characteristic feature of CCB concerns the execution of the weak prefix, which forces the reversing of an executed

action of the same prefix. Such behaviour is described by the concert rules in Fig. 5. The interactions of a process through

a weak prefix are given by rule Concert. On the one hand, the process P aiming at synchronising over a weak prefix

should also reverse a previously executed action: the first premise accounts for the execution of the weak prefix (b) while

the second one stands for the reversal of a. On the other hand, the remaining parallel component Q should execute a

forward action that synchronises with b and reverse an action d that synchronises with a. Interestingly, Q can execute

the matching forward action c that synchronises with b either as part of a strong prefix or as its weak prefix. For this

reason, the third premise requires a reduction labelled by α ∈ {c, (c)}. The label of a concerted action records both the

forward synchronisation γ (b,c) and the reverse one γ (a,d). Note that the premises of the rule Concert have a look-a-

head mechanism, meaning that the right-end side of a premise may occur in the left-hand side of the premise [33]. If we

look at the premises of the Concert we have that this is the case for P′ and Q′ . The remaining rules stand for the contextual

cases for concerted transitions.

It should be noted that there are no contextual rules for transitions corresponding to the execution of weak prefixes,

e.g., we cannot derive P ‖ Q
(b)[k]
−−−→ P′ ‖ Q from P

(b)[k]
−−−→ P′ . Consequently, the first two premises in rule concert should be

interpreted as requiring the same agent to execute the forward action (b) and the reverse one a. Moreover, the premises

in act1 and act1 imply that such actions corresponds to the same prefix. Contrastingly, the third and fourth premises in

concert allow the forward action to be executed by some sequential agent, while the reverse action can be performed by

other agent, as illustrated by the following derivation

(a[l];b).0
(b)[k]
−−−→ (a[l];b[k]).0 (a[l];b[k]).0

a[l]
−−→ (a;b[k]).0

(c; e).0 ‖ (d[l]; e).0
c[k]
−−→ (c[k]; e).0 ‖ (d[l]; e).0 (c[k]; e).0 ‖ (d[l]; e).0

d[l]
−−→ (c[k]; e).0 ‖ (d; e).0

(a[l];b).0 ‖ (c; e).0 ‖ (d[l]; e).0
{γ (b,c)[k],γ (a,d)[l]}
−−−−−−−−−−−−→ (a;b[k]).0 ‖ (c[k]; e).0 ‖ (d; e).0

in which the forward weak action synchronises the first and second agent while the reverse one synchronises the first and

the third one. In order to be able to apply rule concert, it is essential to derive (a[l];b[k]).0
a[l]
−−→ (a;b[k]).0, i.e., to be able

to apply act1 also when the weak prefix corresponds to an already executed action.
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Prom (s,a;b[k]).S
τ
−→ (s,a[k];b).S a ∈ S

Move (s,a,b[k]; c).S
τ
−→ (s,a[k],b; c).S a ∈ S

Fig. 6. Pre-congruence rules for the promotion of a weak bond.

We now are in place to model the example depicted in Fig. 1.

Example 2. Let A = (c;q), B = (d,q) and C = (c,d) the molecules of Fig. 1. For simplicity we omit the trailing 0s. Supposing

γ (c,c) = f, γ (d,d) = e and γ (q,q) = a, we can derive the following synchronisations:

A ‖ B ‖ C
f[1]
−−→ (c[1];q) ‖ B ‖ (c[1],d)

e[2]
−−→ (c[1];q) ‖ (d[2],q) ‖ (c[1],d[2])

Thanks to a concerted action, the process (c[1];q) may break (i.e., undo) the bond on c and create a bond on q. We have:

(c[1];q) ‖ (d[2],q) ‖ (c[1],d[2])
{a[3],f[1]}
−−−−−−→ (c;q[3]) ‖ (d[2],q[3]) ‖ (c,d[2])

We remark that the above transition cannot be derived with the original semantics of CCB [8], because the rule act1 requires

the weak prefix to be a non-executed action (as discussed in the description of rule concert).

Finally, the bond on d can be break and C gets free, i.e.,

(c;q[3]) ‖ (d[2],q[3]) ‖ (c,d[2])
e[2]
−−→ (c;q[3]) ‖ (d,q[3]) ‖ (c,d)

We remark that there are no reverse rules for weak prefixes. However, a bond on a weak action is aimed at modelling

a weak bond in a chemical reaction, which should be interpreted as a temporary bond that should be “passed” to a strong

action as soon as possible to release the bond on the weak action, committing it. This is modelled in CCB via the rules in

Fig. 6. The transitions are labelled with τ , which stands for internal, silent moves. Rule Prom deals with the transfer of the

key from the weak prefix to some strong action a that has not been executed yet. Rule Move transfers a key from a weak

action in a strong prefix to some strong action a that has not been executed yet. Also here our presentation deviates from

the original one, since Move allows to transfer a key only in absence of a weak prefix. For uniformity in the presentation,

we assume all prefixes to carry its strong and weak components. Then, a process like (s).P in the original presentation,

which does not provide a synchronisation via a weak prefix can be written simple as ((s;b).P) \ b for some b not appearing

in P. According to [8], pre-congruence rules have priority over the transition rules. That is, they has to be applied as soon

as possible.

As previously discussed, the operational semantics is defined up-to structural congruence of terms, formally, by the

following rule:

struct
P≡ P

′
P

′ µ
−→ Q

′
Q

′ ≡ Q

P
µ
−→ Q

We now show an example of how rules in Fig. 6 can be used.

Example 3. Consider the process (a;b) ‖ a ‖ b with γ (a,a) = c and γ (b,b) = d. We have the following reduction:

(a;b) ‖ a ‖ b
c[1]
−−→ (a[1];b) ‖ a[1] ‖ b

{d[2],c[1]}
−−−−−−→ (a;b[2]) ‖ a ‖ b[2]

Now, the weak bond on b in process (a;b[2]) ‖ a ‖ b[2] can be promoted to a strong bond; this is achieved by applying rule

Prom as follows:

(a;b[2]) ‖ a ‖ b[2]
τ
−→ (a[2];b) ‖ a ‖ b[2]

As a result, the bond between a[2] and b[2] is irreversible since γ (a,b) is undefined.

Remark. The interaction between restriction in CCB and concerted rules is unexpected. Consider the following variant of

the process introduced in Example 3, defined as follows

(((a;b).e.f ‖ a.e.f) \ {e} ‖ (b.e.f) \ {f}) \ {e,f}

with γ (a,a) = c and γ (b,b) = d (i.e., there are no synchronisations for e and f). One would expect this process to be

equivalent to the one in Example 3, since the added continuations e and f do not have any chance to be executed because

there are no synchronisations for e and f; and, moreover, they are restricted names. However, the behaviour of the two

processes differs, because of the concerted reductions. Note that modified version can mimic the first reduction, i.e.,

6
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(strs)
a ∈ S std(S) fresh(k, s)

(a, s;b).S
a[k]
−−→ (a[k], s;b).S

(strw )
std(S) fresh(k, t)

(c, t;b).S
c[k]
−−→ (c[k], t;b).S

(strm)
std(S) fresh(k, s)

(c,a, s;b).S
c[k]
−−→ (c,a[†k], s;b).S

(wk)
std(S) fresh(k, t)

(t;b).S
(b)[k]
−−−→ (t;b[k]).S

(str)
std(S) s ∩W×K = ∅

(a[k], s;b).S
a[k]
−−→ (a, s;b).S

(a-strp )
std(S)

(a[k], s;b[l]).S
a[k]
−−→ (a[†l], s;b).S

(a-strm)
std(S)

(a[k], c[l], s;b).S
a[k]
−−→ (a[†l], c, s;b).S

(com)
P

a[k]
−−→ P

′
Q

c[k]
−−→ Q

′

P ‖ Q
γ (a,c)[k]
−−−−−→ P

′ ‖ Q′

(com)
P

a[k]
−−→ P

′
Q

c[k]
−−→ Q

′

P ‖ Q
γ (a,c)[k]
−−−−−→ P

′ ‖ Q

(cont)
S

µ
−→ S

′ fresh(µ, t)

(t;b).S
µ
−→ (t;b).S′

(par)
P

µ
−→ P

′ fresh(µ,Q)

P ‖ Q
µ
−→ P

′ ‖ Q

(res)
P

µ
−→ P

′

P \ L
µ
−→ P

′ \ L
n(µ) ∩ L = ∅

Fig. 7. Compositional rules for CCB.

(((a;b).e.f ‖ a.e.f) \ {e} ‖ (b.e.f) \ {f}) \ {e,f}
c[1]
−−→

(((a[1];b).e.f ‖ a[1].e.f) \ {e} ‖ (b.e.f) \ {f}) \ {e,f}

At this point, rule (concert) cannot be applied. First note that restrictions cannot be rearranged because e occurs free in

(b.e.f)\ {f} and f occurs free in ((a;b).e.f ‖ a.e.f)\ {e}. Hence, the only possibility for the application of (concert) would

require: (1) ((a[1];b).e.f ‖ a[1].e.f) \ {e}
(b)[2]
−−−→

a[1]
−−→ and (2) (b.e.f) \ {f}

b[2]
−−→

a[1]
−−→. While (1) holds, (2) clearly does not.

The phenomenon is basically due to the fact that the definition of rule (concert) is not compositional.

3. The compositional calculus of covalent bonding

In this section we revise the semantics of CCB presented in section 2. This will help us to better state the correspondence

between CCB and covalent bond nets (cbns). We remodel CCB semantics following these three ideas: (i) we get rid of

priority of pre-congruence rules (Prom and Move) by applying them directly in the transition rules; (ii) we avoid the look-

a-head of the Concert rule by using a more compact and standard way of gathering labels thorough the parallel operator,

more in the line with a synchronisation algebra [34]; and (iii) when a key/bond is passed from a weak action to a strong

one (mimicking Prom and Move) this key is deemed as invalid (e.g., decorated with †) so to avoid unwanted backward de-

synchronisations. On the one hand, these modifications make the semantics compositional. On the other hand, the calculus

retains the flavour of the original semantics and is consistent with it. The syntax of processes and all the definitions remain

the same, when not explicitly specified.

The set of labels is defined below. We extend the set of labels used in the original presentation to account for moves

compositionally. Our transition system considers a extended set of label. In addition to the original presentation, we have (i)

triples of actions (a[l],b[k],c[l]) that represents, e.g., the moves of a parallel process in which one part starts the concert

with a[l],b[k] and the other contributes with just the complementary reverse c[l]; and (ii) 〈b〉 that stands for the execution

of a weak action in a strong position (i.e., in the left-hand side of ‘;’) for contributing to a concert rule.

λ ::= a[k] | (b)[k] | a[k] | 〈b〉[k]

µ := λ | λ,λ | λ,λ,λ

Define key(µ) for the set of keys of a label, we use fresh(µ, s) for any key fresh in key(µ). We consider runtime processes

in which actions can be marked with a key of the form †l, which means a bond that has been promoted or moved. In this

way the key l cannot be anymore used for backward synchronisations. When we write k, l, we denote keys different from

†l.

The rules are reported in Fig. 7 and Fig. 8. Let us briefly comment on them. Rules Strs and Strw allow for the execution

of respectively a strong action and a weak action in a strong position (e.g., at the left part of ‘;’). Note that Strw can be

applied only when all actions in the prefix but c have been already executed (recall that t ranges over NA×K). Strm
combines the original rules act1 and move: the key k associated with the execution of the weak action c is moved to the

strong action a. We remark that rule Strm differs from strw , which considers the cases in which every strong action in the

prefix has been already executed, and consequently the bond created by the execution of the weak action cannot be moved.

7
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(a-wk1)
std(S) fresh(l, {k, t})

(a[k], t;b).S
(b)[l],a[k]
−−−−−→ (a[†l], t;b).S

(a-wk2)
std(S) fresh(l, {k, t})

(a[k], c, s;b).S
〈c〉[l],a[k]
−−−−−→ (a[†l], c, s;b).S

(a-wk3)
std(S) fresh(l, {k, s})

(a[k], c,d, s;b).S
〈c〉[l],a[k]
−−−−−→ (a, c,d[†l], s;b).S

(conc)
P

µ1
−→ P

′
Q

µ2
−→ Q

′

P ‖ Q
µ1⊕µ2
−−−−→ P

′ ‖ Q

Fig. 8. Compositional concert rules for CCB.

Rule Wk accounts for the execution of a weak prefix as in standard CCB. Rule Str allows for the undoing of a strong action

provided no weak action in a strong position is marked (i.e., the reverse action cannot be followed by a move). Rule A-Strp

undoes a strong action and directly promotes the weak bond. Analogously, rule A-Strm combines the reverse of a strong

action with a move. The other rules are defined as in CCB.

The rules for concerted actions are reported in Fig. 8. Rule A-Wk1 accounts for the initiation of a concert, which consists

of the execution of the weak prefix b and the reversal of the strong action a (within the same prefix), which is followed

by the move of the weak bond l created by the execution of b. Note that the weak bond l is invalidated after the move.

Rule A-Wk2 accounts for the transitions in which a prefix contributes to a concert with both a forward weak action and

a reversal of a strong action. As in A-Wk1 , rule A-Wk2 also reflects the move of the weak bond from the weak action to

the strong action that is being reversed. Rule A-Wk3 is analogous to the previous one, but considers the cases in which the

created bond l is moved to another strong action in the same prefix. Finally Conc rule deals with concert rule and relies on

the definition of the following commutative operation ⊕, which combines labels as follows

µ1 ⊕ µ2 =





a[k], 〈b〉[l] if µ1 = a[k] ∧ µ2 = b[l]

µ1,µ2 if µ1 = {a[k], (b)[l]} ∧ µ2 = c[l] ∧ γ (b, c) ↓

µ1,µ2 if µ1 = {a[k], (b)[l]} ∧ µ2 = c[k] ∧ γ (a,c) ↓

γ (a,c)[k],γ (b,d)[l] if µ1,µ2 = {a[k],c[k], (b)[l], β[l]} ∧ β ∈ {c, (c), 〈c〉}

The first case allows for the combination of parallel process that contribute with a reverse action a[k] and a forward

weak action in a strong position b[l]. Note that a[k] ⊕ b[l] = a[k] ⊕ 〈b〉[l], where 〈b〉[l] reflects the fact that both actions

are intended to contribute to a concert. The following two cases account for the situations in which one parallel branch

contributes with the label that indicates the starting of a concert, i.e., {a[k], (b)[l]}, and the other with the complementary

forward (c[l]) or backward (c[k]) action. The last case deals with a concerted move in which the labels of the different

branches contribute with all needed actions.

Example 4. Consider the molecules A = (c;q), B = (d,q) and C = (c,d) with γ (c,c) = f, γ (d,d) = e and γ (q,q) = a

defined in Example 2. We have the following reductions:

A ‖ B ‖ C
f[1]
−−→ (c[1];q) ‖ B ‖ (c[1],d)

e[2]
−−→ (c[1];q) ‖ (d[2],q) ‖ (c[1],d[2])

Then, we have the following derivation:

(c[1];q)
(q)[3],c[1]
−−−−−−→ (c[†3];q)

(d[2],q)
q[3]
−−→ (d[2],q[3]) (c[1],d[2])

c[1]
−−→ (c,d[2])

(d[2],q) ‖ (c[1],d[2])
〈q〉[3],c[1]
−−−−−−→ (d[2],q[3]) ‖ (c,d[2])

(c[1];q) ‖ (d[2],q) ‖ (c[1],d[2])
{a[3],f[1]}
−−−−−−→ (c[†3];q) ‖ (d[2],q[3]) ‖ (c,d[2])

Let us note that the label 〈q〉[3], c[1] is obtained as the result of q[3] ⊕ c[1]. This example is borrowed from [8]. Now, the

bond between the actions d identified with the key 2 can be undone.

(c[†3];q) ‖ (d[2],q[3]) ‖ (c,d[2])
e[2]
−−→ (c[†3];q) ‖ (d[†3],q) ‖ (c,d)

Note that the final configuration differs from the final one in Example 2 because promotion and move of weak bonds

take place instantaneously. Nonetheless, the original semantics of CCB requires the application of pre-congruence rules

before deriving new transitions from the final configuration of Example 2, which would produce the similar configuration

(c[3];q) ‖ (d[3],q) ‖ (c,d) (if we disregard †). Our semantics deviates from the original definition of CCB in the treatment

of promoted bonds, which are not reversible in our case. Note that (c[†3];q) ‖ (d[†3],q) ‖ (c,d) would be unable to break

8
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the bond †3 between c and q even if c and q were synchronisable. After noting that none of the examples in [8] exploit

such a mechanism, we adopted this constraint that simplifies our encoding.

Example 5. Consider the process (a;b) ‖ a ‖ b with γ (a,a) = c and γ (b,b) = d defined in Example 3. We have the following

reductions:

(a;b) ‖ a ‖ b
γ (a,a)[1]
−−−−−→ (a[1];b) ‖ a[1] ‖ b

µ1⊕µ2
−−−−→ (a[†2];b) ‖ a ‖ b[2]

where µ1 = (b)[2],a[1] and µ2 = 〈b〉[2],a[1]. Let us note that µ2 is the result of two actions in parallel performed by

a[1] and b. With respect to the Example 3 (and in general with the original CCB) we can notice that the promotion of a

weak bond to a strong one is done automatically in the rule, and not via auxiliary pre-congruence rules. In this way we get

rid of priority on rules. Also, we use † to indicate a promoted (or moved) bond, which cannot participate anymore in any

synchronisation.

Definition 3. A context C is a process with a hole •, which is defined by the following grammar:

C[•] ::= (•, s;β).C | (s; •).C | C ‖ Q | Q ‖ C | C \ L

We now give the definition of well-formedness for both prefixes and processes. Intuitively a prefix is well-formed if its

keys are pair-wise different (e.g., there are no repetitions); invalid keys are associated only with strong actions; and a weak

action is marked only if all other strong actions are marked. Condition for a process P to be well-formed are a bit more

involved. Let us comment on them. The first condition tells that if the process P is a prefix of the form (s;β).S then they

key used by the prefix (s;β) are disjoint from the keys of its continuation S and if S has some executed actions then the

weak action of the prefix does not bear any key. A parallel composition P1 ‖ P2 is well-formed if the two processes are

well-formed and they do not have marked weak prefixed. Also, the shared keys have to be used once per part, meaning

that there has been a syncrhonization. To this end we have three sub-cases: (i) either a shared key k marks two action

which are not restricted by their respective contexts; (ii) the key is used to invalidate (via †) a strong action in one part

of the parallel and in the other part it is used to mark a weak action; or (iii) in both parts the key is used to invalidate a

strong action. Finally, the process P \ L is well-formed if P is well-formed.

We now give the definition of well-formedness for both prefixes and processes.

Definition 4. A prefix (s;β) is well-formed if

1. key(s;β) is a set; and

2. ∀c ∈ W,k ∈K, s(c[†k]) = 0 and β 6= c[†k].

3. ∀c ∈ W,k ∈K, if s, β(c[k]) = 1 then s ∈ A×K.

A process P is well-formedness if:

1. P= (s;β).S, and (s;β) and S are well-formed, and key(s;β)∩ key(S) = ∅, and key(S) 6= ∅ implies s ∈ NA×K and β ∈A.

2. P= P1‖ P2 , and P1 and P2 are well-formed and free from executed weak prefixes, and for all k ∈ K if k ∈ key(P1) ∩ key(P2)

then key(P1)(k) = key(P2)(k) = 1 and one of the following holds

i P1 = C1[a[k]] and P2 = C2[b[k]] and γ (a,b) ↓, a /∈ bn(C1[]) and b /∈ bn(C2[]).

ii P1 = C1[a[†k]] and P1 = C2[b[k]] and a ∈ S, b ∈ W, a /∈ bn(C1[]) and b /∈ bn(C2[]).

iii P1 = C1[a[†k]] and P1 = C2[b[†k]] and a,b ∈ S, a /∈ bn(C1[]) and b /∈ bn(C2[]).

3. P= P1 \ L and P1 is well-formed.

Lemma 1. If P is well-formed then ∀k ∈K.key(P)(k) ≤ 2.

Proof. By a straightforward induction on the structure of P. 2

Lemma 2. If P is well-formed and P
µ
−→ P′ , then P′ is well-formed.

Proof. By induction on the derivation and with a case analysis on the last applied rule. All the cases are simple. The main

idea is that all keys are freshly generated, and through Com or Conc keys are forced to match if a synchronisation can

happen. It is here the only place in which two instances of the same key k can be generated, and these instances depending

on the rule used to derive the label can be used to mark a strong action, to invalidate a strong action or to mark a weak

action. 2

9
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Fig. 9. An ipt N .

4. Nets

We summarise the basics of Petri net with inhibitor arcs along the lines of [35,36]. A net is the triple 〈S, T , F 〉 where S

is a set of places, T is a set of transitions such that S ∩ T = ∅ and F ⊆ (S × T ) ∪ (T × S) is the flow relation.

Definition 5. A Petri net is a pair N = (〈S, T , F 〉,m) where 〈S, T , F 〉 is a net and m ∈ µS is the initial marking.

Definition 6. A Petri net with inhibitor arcs (ipt for short) is the pair N = (〈S, T , F , I〉,m), where (〈S, T , F 〉,m) is a Petri net

and I ⊆ S × T is the inhibiting relation.

Given an ipt N = (〈S, T , F , I〉,m) and x ∈ S ∪ T , the pre- and postset of x are respectively defined as the (multi)sets •x =

{y | (y, x) ∈ F } and x• = {y | (x, y) ∈ F }. If x ∈ S then •x ∈ µT and x• ∈ µT ; analogously, if x ∈ T then •x ∈ µS and x• ∈ µS .

The inhibitor set of a transition t is the (multi)set ◦t = {s | (s, t) ∈ I}. The definition of •·, ·•, ◦· generalise straightforwardly to

multisets of transitions.

Example 6. Consider the ipt N depicted in Fig. 9, which consists of six places depicted as circles and three transitions

drawn as boxes. The flow relation is represented by black arrows while the inhibitor relation is shown by red lines ended

with a small circle. The initial marking m = {s1, s2, s3} is represented by the bullets drawn within the corresponding places.

Consider, for instance, the transition b: it consumes tokens from s2 and s3 , produces a token in s5 , and is inhibited by s1 .

Hence, its pre-, post- and inhibiting sets are respectively •b = {s2, s3}, b
• = {s5}, and

◦b = {s1}.

A (multiset of) transition(s) A ∈ µT is enabled at a marking m ∈ µS , written m [A〉, whenever •A ⊆m and ∀s ∈ ◦A. m(s) =

0 ∧ A•(s) = 0. The last condition requires the absence of tokens in all places connected via inhibitor arcs to the transitions

in A. Observe that the multiset ∅ is enabled at every marking. A (multiset of) transition(s) A enabled at a marking m can

fire and its firing produces the marking m′ = m − •A + A• . The firing of A at a marking m is denoted by m [A〉m′ . We

assume that each transition t of an ipt N is defined such that •t 6= ∅, i.e., it cannot fire spontaneously in an uncontrolled

manner without consuming tokens. Moreover, we assume that there are no isolated places, i.e., for all place s, there exists

a transition t such that s ∈ •t ∪ t• ∪ ◦t .

Example 7. Consider the ipt introduced in Example 6 and note that both a and c are enabled at the initial marking m.

On the contrary, b is not enabled because its inhibitor place s1 contains a token. The firing of a produces the marking

m′ = {s2, s3, s4}, i.e. m [a〉m′ , at which b becomes enabled because its preset s2 and s3 is marked while its inhibitor place s1
is not.

A marking m is reachable in N if there exists a firing sequence σ = m [A0〉m1 · · · mn [An〉m from the initial marking m

to m. We write MN for the set of all reachable markings of N .

Example 8. The set of reachable markings of the ipt in Example 6 is MN1 = {m, {s2, s3, s4}, {s1, s2, s6}, {s4, s5}, {s2, s4, s6}}.

An ipt N is safe if each reachable marking is a set. Hereafter, we will consider only safe ipt.

Given a net N = (〈S, T , F , I〉,m) and a subset T ′ ⊆ T of transitions the subnet generated by T ′ is the net (〈S ′, T ′, F ′, I ′〉,

m′) where S ′ = •T ′ ∪ T ′• ∪ ◦T ′ , F ′ = F ∩ ((S ′ × T ′) ∪ (T ′ × S ′)), I ′ = I ∩ (S ′ × T ′) and m′ is the restriction of m to the places

in S ′ .

Example 9. Consider again the ipt N of Fig. 9, and take T ′ = {a}. The places of the subnet identified by {a} are s1 and s4 and

the flow arcs are (s1,a) and (a, s4), there are no inhibitor arcs and only s1 is initially marked. It the subset of transitions

were {b} then the subnet would have s1, s2, s3 and s5 as places, (s2,b), (s3,b) and (b, s5) as flow arcs, (s1,b) as inhibitor

arcs. Its initial marking would assign tokens to s1, s2, s3 (but not to s5).

Definition 7. Let N = (〈S, T , F , I〉,m) be an ipt. N can be partitioned into k components if there exists a partition

{T1, . . . , Tk} of the set of transitions T such that

10
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Fig. 10. A net N with two partitions (N1 and N2).

• Ni = (〈S i, T i, F i, I i〉,mi) is the subnet of N generated by T i ; and

• {S1, . . . , Sk} is a partition of the set of places S .

A net can be partitioned if it consists of a set of disjoint subnets, i.e., there is no arc connecting a place in S i with

a transition in T j , if i 6= j. It is worth observing that the ipt N is (〈
⋃

i∈{1,...,k} S i,
⋃

i∈{1,...,k} T i,
⋃

i∈{1,...,k} F i,
⋃

i∈{1,...,k} I i〉,⋃
i∈{1,...,k} mi) because we consider nets without isolated places.

Example 10. Consider the net N in Fig. 10. It can be partitioned into two subnets, namely N1 (with places s1, s2, s4 and s5
and transitions a and b) and N2 (with places s3 and s6 and transition c).

When establishing the correspondence between nets and terms of CCB the name of the executed transitions will play a

fundamental role, hence we consider labelled nets, where the labelling mapping is defined as a total mapping of transitions

into a set of labels L.

Definition 8. A labelled Petri net with inhibitor arcs (lipt for short) is a pair N = (〈S, T , F , I, ℓ〉,m), where (〈S, T , F , I〉,m) is

an ipt and ℓ : T → L is a labelling function.

The notion of partition is lifted to labelled nets in the obvious way.

5. Covalent bond nets

We restrict our attention to a class of nets in which dependencies are represented through inhibitor arcs, along the lines

of [17]. We introduce a class of contextual Petri nets, baptized bond nets, which consists of several components in which (i)

dependencies are mainly recovered from the inhibiting relation instead of the usual flow relation, and (ii) synchronisations

(bonds) among components are allowed under suitable assumptions.

We consider a set of labels L, the precise structure of which will be made explicit later. For now, we assume that L

contains a non empty subset LW ⊂ L of weak labels, and a non empty subset LS ⊂ L of strong labels. For the sake of the

simplicity, we omit the marking of lipt in the following definitions because the class of bond nets is defined only in terms

of the structure of the net.

Definition 9. Let N = 〈S, T , F , I, ℓ〉 be an lipt. N is a basic net if the following conditions are satisfied:

1. ∀t, t′ ∈ T . •t′ ∩ t• = ∅;

2. ∀t ∈ T . •t 6= ∅ and t• 6= ∅; and

3. ∀t ∈ T . ◦t is finite.

The conditions imposed on basic nets share motivations with occurrence nets [37], unravel nets [38–40] and flow nets

[41], in which computations are explained without resorting to firing sequences, as it will be clearer when discussing the

notion of configuration. For now it is enough to observe that the execution of some transition can be inferred by looking

at the postset of it, though this could not be the unique condition. The first condition implies that dependencies in basic

nets do not arise because of the flow relation. The second condition ensures that each transition is not allowed to fire

spontaneously (non empty preset) and that some effect of its firing can be observed (non empty postset). The third condition

implies that each transition has a finite set of inhibiting places, which suggests that the dependencies of each transition are

finite.

The notion of basic net is further refined into the one of pre-bond net, where the labels play a major role.

Definition 10. Let N = 〈S, T , F , I, ℓ〉 be a basic net, TS = {t ∈ T | ℓ(t) ∈ LS} and TW = {t ∈ T | ℓ(t) ∈ LW} be subsets of tran-

sitions. N is a pre-bond net (pbn for short) if the following further conditions are satisfied:

11
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Fig. 11. A simple pbn.

1. TS 6= ∅ 6= TW;

2. ∀t ∈ TS ∪ TW. |•t| = 1;

3. ∀t ∈ TS. ◦t = ∅; and

4. ∃!t ∈ TW. ◦t = •TS ∪ •(TW \ {t}).

In a pbn there must be transitions labelled in LS and in LW , and these transitions have just a single place in their preset.

Transitions with the same label in LS ∪ LW may share the same preset. Transitions with labels in LS are such that their

inhibitor set is empty, and there exists a unique transitions labelled in LW which is inhibited by all the other transitions

with labels in LS and in LW . This transition is called weak, since it can be fired only when all the other transitions with

labels in LS and LW have been executed. The weak transition can be identified and denoted as weak(N), provided that N is

a pbn. Thus weak(N) = {t ∈ T | ℓ(t) ∈ LW ∧ ◦t = •TS ∪ •(TW \ t)} is the set containing the weak transition and strong(N) =

TS ∪ TW \ weak(N) are all the transitions in a pbn that are not weak and have a label in LS ∪ LW , which we call strong

transition. It should be stressed that a strong transition may have a weak label, but a weak transition should have a weak

label.

Example 11. The net in Fig. 11 is a pbn where the set weak(N) contains the transition b and the set of strong transitions is

strong(N) = {a, c}.

Proposition 1. Let N = 〈S, T , F , I, ℓ〉 be a pbn. Then weak(N) is a singleton.

Proof. It follows from the definition of pbn. 2

Definition 11. Let N = 〈S, T , F , I, ℓ〉 be a pbn. N is stratified if there exists a partition of places and transitions indexed by I

such that S =
⋃

i∈I S i , T =
⋃

i∈I T i , F =
⋃

i∈I F i , m =
⋃

i∈I mi , ℓi is ℓ restricted to the transition in T i , and

1. ∀i ∈ I. Ni = (〈S i, T i, F i, I ∩ S i × T i, ℓi〉,mi) is a pre-bond net; and

2. ∀t ∈ T i either
◦strong(Ni) = ∅ and ◦weak(Ni) = •strong(Ni) or there exists a unique j ∈ I. ◦t\ S i =

•strong(N j)∪weak(N j)
• .

For each i ∈ I we say that Ni is a part of the stratified pre-bond net N , and it is denoted by C(N, i). A stratified pre-bond

net is a net formed by pre-bond nets that are only connected by inhibitor arcs, and the transitions of one of the components

which are inhibited by places in another component, are all inhibited by the same subset of places. The weak transitions of

a stratified pbn can be identified, as they are the union of the weak transitions of each component. With abuse of notation,

we write weak(N) =
⋃

i∈I weak(C(N, i)) for the set of weak transitions.

Example 12. The net in Fig. 12 is a stratified one. It has two parts C(N,1) and C(N,2). The net C(N,1) is the one depicted

in Fig. 11, whereas C(N,2) is the net with places {s7, s8, s9, s10}, transitions d and e. The weak transition e is inhibited by

the place s7 (depicted with a red inhibitor arc in Fig. 12) and the two transitions are inhibited by some places belonging to

the simple net C(N,1), namely the places s1 , s3 and s5 .

Definition 12. Let N = 〈S, T , F , I, ℓ〉 be a stratified pbn. We say that it is well-stratified if the set of index I can be totally

ordered and ∀i ∈ I. ∀t ∈ T i if
◦t * S i then

◦t ⊆ S j with j being the immediate predecessor of i.

The fact that I can be totally ordered implies that there is a bijection between I and {1, . . . ,n} with n = |I|, where the

notion of immediate predecessor, if needed, is just minus one. If the set of indexes I can be totally ordered, we write fst(I)

for the minimum of I.

Example 13. The net in Fig. 12 is well-stratified. Indeed, its two components are C(N,1) and C(N,2) and the set of indexes

is {1,2} ordered as natural numbers.

12
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Fig. 12. A stratified pbn.
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Fig. 13. A pbn where each transition has a key place.

Proposition 2. Let N = 〈S, T , F , I, ℓ〉 be a well-stratified pbn with respect to the set of index I. Then

• C(N, fst(I)) = 〈S fst(I), T fst(I), F fst(I), I ∩ S fst(I) × T fst(I), ℓfst(I)〉 is a simple pbn; and

• if |I| > 1 then N ′ = 〈S \ S fst(I), T \ T fst(I), F \ F fst(I), I \ (I ∩ S fst(I) × T fst(I)), ℓ
′〉 with ℓ′ being ℓ restricted to transitions in T \ T fst(I) ,

is a well-stratified pbn with respect to the set of indexes I \ {fst(I)}.

Proof. C(N, fst(I)) = 〈S fst(I), T fst(I), F fst(I), I ∩ S fst(I) × T fst(I), ℓfst(I)〉 is a pbn, as it is prescribed by Definition 12.

Assume now that N ′ is not well-stratified. This implies that the set of indexes I \ {1} cannot be totally ordered. Hence, I

is not totally ordered, giving a contradiction. 2

We introduce now the notion of key for a transition in a net. The idea is to have one or more places whose unique

purpose is to signal that a given transition has been executed. These places will become handy when dealing with reversing

transitions, similarly to the approach pursued in [18], or when some activity depends on the execution of other ones, but

each transition having key places must at least produce a token in a place which is not categorized as a key.

Definition 13. Let N = 〈S, T , F , I, ℓ〉 be an lipt. Let t ∈ T , we say that S ′ ⊆ t• is a set of keys for the transition t , written as

k(t), if |t• \ S ′| 6= ∅ and ∀s ∈ S ′. s• = ∅ and s /∈ ◦T .

Example 14. The net in Fig. 13 is a pbn where the transitions a,b and c have key, which are those in green. More precisely

s7 is the key place of a, s8 is the one of b and finally s9 is the key place of c. Each transition, when fired, produces a token

in a place which is not a key place, and those places are s4, s5 and s6 . Observe that in this net the choice of which places

are key places is arbitrary, but it cannot happen that both places in the postset of a transition are categorized as key places,

as Definition 13 forbids it.

In most cases we will consider nets where each transition has just one key place, but in some peculiar cases we do need

more key places, hence the key places for a transitions are in general a set. The set of keys in the net N is denoted with

keys(N) =
⋃

t∈T k(t).

The places in k(t), when marked, simply implies that the transition t has been executed. As there is no transition

removing that token, this information remains.

So far we have considered nets where a transition that could be interpreted as a synchronisation is not present. We

characterize the transitions that, beside the key places, have the same effect of the execution of other two transitions, and

that may be executed whenever the two transitions can be executed.

13
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Fig. 14. A net N with a bond transition.

Definition 14. Let N = 〈S, T , F , I,m, ℓ〉 be a lipt. We say that t ∈ T is a bond transition if there exists t1, t2 ∈ T with
•t1 ∩ •t2 = ∅ and t1

• ∩ t2
• = ∅ such that

• •t = •t1 ∪ •t2;

• t• \ k(t) = t1
• \ k(t1) ∪ t2

• \ k(t2); and

• ◦t = ◦t1 ∪ ◦t2 .

The transition t is a bond between the transitions t1 and t2 , and it conveys the idea that the execution of t has the same

effects as the execution of both beside the key places, which in this case will record that the bond transition t has been

executed and not the two ones.

Definition 15. Let N = 〈S, T , F , I,m, ℓ〉 be a lipt. We say that the subset of transition T ′ ⊆ T such that

• ∀t ∈ T ′ . t is a bond transition; and

• •(T \ T ′) ∪ (T \ T ′)
•
= S \ (

⋃
t∈T ′ k(t));

is the set of bond transitions of N and it is denoted with bond(N).

A transition in bond(N) can be possibly removed without changing the reachable markings, beside the possible keys,

which do not contribute to the enabling or disabling of any transition. A bond transition will be used to bond two indepen-

dent subnets.

Example 15. In the net depicted in Fig. 14 the transition e bonds the two transition a and c: beside the key places of these

two transitions, e has the same effect (without its key place). In the net N the set bond(N) contains just the transition e.

We are now ready to define what a bond net is, capturing the intuition that a bond net is made by some well-stratified

components which are connected using bonds.

Definition 16. Let N = 〈S, T , F , I, ℓ〉 be a lipt, let bond(N) ⊆ T be the set of bond transitions of N , and let Sbond(N) be the

set of keys of the bond transitions {s ∈ S | ∃t ∈ bond(N). s ∈ k(t)}. We say that N is a bond nets (bn for short) if there exists

a set of indexes Y such that {T i | i ∈ Y} is a partition of the set of transitions T \ bond(N) and

• for each i ∈ Y the net Ni = 〈S i, T i, F i, I i, ℓi〉 is a well-stratified pbn, where S i = •T i ∪ T i
• ∪ ◦T i , F i, I i and ℓi are the

restrictions of F , I, ℓ to transitions and places in S i and T i ;

• 〈
⋃

i∈Y S i,
⋃

i∈Y T i,
⋃

i∈Y F i,
⋃

i∈{1,...,k} I i,
⋃

i∈Y ℓi〉 is the net 〈S \ Sbond(N), T \ bond(N), F ′, I ′, ℓ〉, where F ′ , I ′ and ℓ′ are F ,

I and ℓ restricted to transitions in T \ bond(N) and places in S \ Sbond(N); and

• for each t ∈ bond(N) there exists two indexes i, j with i 6= j such that •t ⊆ S i ∪ S j , t
• \ k(t) ⊆ S i ∪ S i and |•t ∩ Sh| = 1 =

|t• ∩ Sh|, with h ∈ {i, j}.

The first two conditions simply state that the net without the bond transitions and the associated keys places can be

partitioned into well-stratified pbns, and the last one requires that each transition in bond(N) bonds just two of these

subnets. Y denotes the set of the indexes of the partition and each well-stratified subnet is identified with P(N, j) for j ∈ Y.

Example 16. The net in Fig. 14 is a bond net whose two components are depicted in Fig. 15.

Given a bond net N , we can assume that the sets of indexes associate to the stratification of each well-stratified compo-

nent P(N, j) is such that I j ∩ Il = ∅ for each j 6= l.

We now turn our attention to markings.

14
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Fig. 15. The two components P(N,1) and P(N,2) of the bond net N .

Definition 17. Let N = 〈S, T , F , I, ℓ〉 be a lipt and m : S → N be a marking, we say that m is feasible whenever if the place

s is marked (i.e. m(s) = 1) then the followings hold:

• if s ∈ •t for some t ∈ T , then ∀s′ ∈ t•. m(s′) = 0; and

• if s ∈ t• for some t ∈ T , then ∀s′ ∈ •t. m(s′) = 0.

A feasible marking, which is not necessarily a reachable one, is such that if a marked place is in the preset of a transition

t then the postset of the transition is unmarked and vice versa.

With abuse of notation, we will call N both the net 〈S, T , F , I, ℓ〉 and the marked one (〈S, T , F , I, ℓ〉,m).

Definition 18. Let N = (〈S, T , F , I, ℓ〉,m) be a marked lipt where m is a feasible marking. We way that N is acyclic if each

transition can be executed just once in each firing sequence.

Observe that this notion, differently from what happens in nets like occurrence net, is not a syntactic one, but rather a

semantic one.

Proposition 3. Let N = (〈S, T , F , I, ℓ〉,m) be a bn where m is a feasible marking. Then N is acyclic.

Proof. If N is just a simple pbn the thesis follows, and acyclicity scales to well-stratified nets as each component of a

well-stratified net is trivially inhibited by someone preceding it in the order. If the net N has k well-stratified components

acyclicity follows observing that each component is acyclic and the transitions connecting them (the bond transitions)

preserve the acyclicity. 2

We now introduce a way to forbid the happening of transitions bearing a specific label.

Definition 19. Let N = (〈S, T , F , I, ℓ〉,m) be a lipt and L ⊆ L is a subset of labels. Then N \ L = (〈S ′, T , F , I ′, ℓ〉,m′) where

S ′ = S ⊎ {sa | a ∈ L}, I ′ = I ⊎ {(sa, t) | ℓ(t) = a} and m′ = m ⊎ {sa | a ∈ L} is net N restricted to transitions not labelled in L.

The idea is rather simple: instead of removing the transitions that have not to execute, as it is usually done, we inhibit

them permanently. This is possible since there is no transition removing the token from one of these newly introduced and

marked places, and these places are connected only with inhibitor arcs to suitable transitions.

Proposition 4. Let N = (〈S, T , F , I, ℓ〉,m) be a lipt, L ⊆ L be a subset of labels, and let t ∈ T be a transition such that ℓ(t) ∈ L

and there exists a marking m ∈ MN such that m [t〉. Consider the net N \ L = (〈S ′, T , F , I ′, ℓ〉,m′) as defined in Definition 19. Then

∀m ∈MN\L it holds that ¬(m [t〉 ).

Proof. As already noticed, the transitions with labels in L are permanently inhibited in the net, hence the thesis follows. 2

We have so far considered labelled nets with some characteristics, which we recap here. The nets have just forward

transitions, meaning that when a token is produced in a place, it remains in that place forever, and the inhibitor arcs are

used to enforce that the execution of transitions is (partially) ordered.

5.1. Covalent bond nets

We now define covalent bond nets where specific transitions are allowed to (re)move keys. As keys are connected to the

execution of a certain activities, these transitions either simply undo the activities these keys are connected with, or they

undo some activities and coordinate some others.

15
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Fig. 16. The net N in Fig. 14 with the transitions reversing a, c and the bond e.

Definition 20. Let N = 〈S, T , F , I, ℓ〉 be an lipt. We say that it is a covalent bond net (cbn) if there exists a subset U ⊆ T of

transitions such that

1. N ′ = 〈S ′, T ′, F ′, I ′, ℓ′〉, where T ′ = T \ U , S ′ = •T ′ ∪ T ′• ∪ ◦T ′ and F ′ , I ′ and ℓ′ are the restrictions of F , I and ℓ to the

transitions in T ′ and places in S ′ , is a bond net with Y components P(N ′, j) = 〈S j, T j, F j, I j, ℓ j〉 with j ∈ Y;

2. ∀u ∈ U . •u ∩ keys(N ′) 6= ∅;

3. ∀ j ∈ Y, ∀t ∈ strong(P(N ′, j)). ∃!u ∈ U such that •t = u• , t• = •u and ℓ(u) = ℓ(t); and

4. ∀t ∈ bond(N ′). ∃!u ∈ U such that •t = u• , t• = •u and ℓ(u) = ℓ(t).

A covalent bond net is a bond net where the added transitions connecting the various components are either transitions

reversing the effect of some forward transitions in the net, or these transitions somehow concert more complex activities,

some of them has happened, henceforth these transitions use key-places. In Fig. 16 the classical reversing transitions are

depicted: these transitions simply undo either a bond or some strong transition.

The definition of covalent bond net is rather liberal but it conveys the two main features we are interested in:

• the net is formed by sequential components interacting together, and these components have a specific form (well-

stratified nets); and

• the interaction between these components are via bonds and concerting transition, where forward interactions produce

keys, and other interactions use the keys produced by these interactions.

6. CCB and covalent bond nets

This section presents the encoding of CCB terms as labelled cbns, i.e., cbns are equipped with a labelling function that

maps transitions to labels. We consider the following set L of labels:

l ::= a | a | (b) | 〈b〉

L ::= l | l, l | l, l, l

They are basically the CCB labels, without keys, as information on keys is inferred from key places. The totally undefined

labelling mapping is written as ⊥.

For a process P, we write N(P) for the associated net 〈S, T , F , I, ℓ〉 and M(P) for the associated marking. We first

describe and discuss on how the net part of the encoding is defined, and then formalize the associated marking. The

encoding is defined inductively on the structure of processes.

The terminated process 0 is encoded as the empty net.

Definition 21. N(0) = 〈∅,∅,∅,∅,⊥〉 is the net associated to the term 0.

Lemma 3. The net N(0) is a cbn.

Proof. Trivial. 2

The marking associated to 0 is M(0) = ∅, hence the marked net associate to 0 is (N(0),M(0)). The marking ∅ is clearly

a feasible marking.

The encoding of a prefixed process is defined in terms of the auxiliary encoding of prefixes defined below. Intuitively,

the net associated with a prefix generates several transitions to encode the behaviour associated with each inference rule

of the operational semantics.

Let (s;b) be the prefix to be encoded, then the set of transitions associated with rule strs are the following:

Tstrs (s;b) = {〈a, i〉 | a ∈ S∧ 1 ≤ i ≤ s(a)}

16
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Basically, the occurrence of a strong action a in s is mapped to a transition 〈a, i〉, where the natural i ∈ N is used to

disambiguate different occurrences of the same action a in s. A transition 〈a, i〉 has the place ∗〈a, i〉 as its pre set and the

places 〈a, i〉∗ and 〈a, i〉† as its post set, i.e.,

•〈a, i〉 = {∗〈a, i〉} 〈a, i〉• = {〈a, i〉∗, 〈a, i〉†} (1)

The place 〈a, i〉∗ indicates that the i-th occurrence of a has been fired, while 〈a, i〉† states that the key has been orig-

inated from the execution of a (in contraposition to keys obtained by promotion or moves, as will be discussed later).

Besides, we do not associate any inhibitor arc with this transitions, i.e.,

◦〈a, i〉 = ∅

The labels associated to those transitions are the associated actions, i.e.,

ℓ〈a, i〉 = a

For the sake of simplicity, the arcs associated to these transitions are denoted as Fstrs (the set of inhibitor arcs for these

transition is empty), and the labelling mapping for these transitions ℓstrs .

The set of transitions associated to the instances of the rule strw is as follows.

Tstrw (s;b) = {〈c,1〉 | c ∈W∩ s}

We remark that this set can have at most one transition, since at most one weak action can be in the strong part of a prefix.

The pre and post sets of the transitions are defined analogously, i.e.,

•〈c,1〉 = {∗〈c,1〉} 〈c,1〉• = {〈c,1〉∗, 〈c,1〉†}

However, the set of inhibitor places is not empty, i.e., this transition will be enabled after every other strong action in the

prefix have been already executed

◦〈c,1〉 = {∗〈a, i〉 | a ∈ S∧ 1 ≤ j ≤ s(a)}

Also in this case the label is the action, i.e., ℓ〈c,1〉 = c. Fstrw and Istrw are the flow arcs and inhibitor arcs for these

transitions, and the labelling is ℓstrw .

The set of transitions for mimicking strm is

Tstrm (s;b) = {〈c,a, i〉 | c ∈ W∩ s ∧ a ∈ S∧ 1 ≤ i ≤ s(a)}

A transition 〈c,a, i〉 represents the execution of the weak action c in the strong part of the prefix followed by a move of

the generated bond to the strong action a.

•〈c,a, i〉 = {∗〈a, i〉} 〈c,a, i〉• = {〈a, i〉∗}

In addition, we use inhibitor arcs to enforce the availability of c, i.e.,

◦〈c,a, i〉 = {〈c,1〉∗}

The pre set and post set of 〈c,a, i〉 resemble those of 〈a, i〉; however, we do not produce a key, to recall that the bond is

due to a move and hence invalidated, i.e., †k. In this case, the label corresponds to the weak action, i.e., ℓ〈c,a, i〉 = c and

Fstrm and Istrm are the flow arcs and inhibitor arcs for these transitions, whereas ℓstrm is the labelling mapping.

The set of transitions for mimicking wk is

Twk(s;b) = {〈b,0〉}

The pre, post and inhibitor sets are, as expected,

•〈b,0〉 = {∗〈b,0〉} 〈b,0〉• = {〈b,0〉∗, 〈b,0〉†}

and

◦〈b,0〉 = {∗〈a, i〉 | a ∈A∧ 1 ≤ j ≤ s(a)}

In this case, the label corresponds to the weak action, i.e., ℓ〈b,0〉 = b. Fwk and Iwk are the flow arcs and inhibitor arcs for

these transitions, ℓwk the labelling mapping.

Observe that this is a weak transition.
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Tstrs (a, c;b) = {〈a,1〉}

Tstrw (a, c;b) = {〈c,1〉}

Tstrm (a, c;b) = {〈c,a,1〉}

Twk(a, c;b) = {〈b,0〉}

∗〈c,1〉

∗〈b,0〉

∗〈a,1〉

〈c,1〉∗ 〈c,1〉†

〈b,0〉∗ 〈b,0〉†

〈a,1〉∗ 〈a,1〉†

〈c,1〉〈c,a,1〉

〈b,0〉

〈a,1〉

Fig. 17. Forward transitions for the encoding of (a, c;b).

Example 17. Consider the prefix (a, c;b). The encoding of transition rules corresponding to forward transitions is shown

in Fig. 17. The transition 〈a,1〉 accounts for the execution of the strong action a in the prefix. The transition 〈b,0〉 corre-

sponding to the execution of the weak action b is quite similar except for the inhibitor arc that prevents its firing if the

strong action a has not be fired. The case in which c is fired when a has not, is modelled by the transition 〈c,a,1〉, that

basically accounts for the execution of c followed by a move of the bond from the weak action c to a, which produces

effects analogous to the execution of a. Finally, the transition 〈b,0〉 corresponds to the execution of the weak prefix b,

which is prevented if some of the actions in the strong part of the prefix (i.e., a and c) has not yet been executed.

Lemma 4. Let (s;b) be a CCB prefix. Then the lipt 〈S, T , F , I, ℓ〉 where

• S = {∗〈a, i〉, 〈a, i〉∗, 〈a, i〉† | a ∈ S∧ 1 ≤ i ≤ s(a)} ∪ {∗〈c,1〉, 〈c,1〉∗, 〈c,1〉† | c ∈ W∩ s} ∪ {∗〈b,0〉, 〈b,0〉∗, 〈b,0〉†};

• T = Tstrs ∪ Tstrw ∪ Tstrm ∪ Twk;

• F = Fstrs ∪ Fstrw ∪ Fstrm ∪ Fwk;

• I = Istrw ∪ Istrm ∪ Iwk; and

• ℓ = ℓstrs ∪ ℓstrw ∪ ℓstrm ∪ ℓwk

is a cbn.

Proof. To prove that the net the lipt N = 〈S, T , F , I, ℓ〉 is indeed a cbnit is enough to show that it is a pbn.

We first observe that weak(N) = {〈b,0〉} and its inhibitor set ◦〈b,0〉 is {∗〈a, i〉 | a ∈ S∧ 1 ≤ i ≤ s(a)} ∪ {∗〈c,1〉}. Each

transition in Tstrs ∪ Tstrw ∪ Tstrm ∪ Twk has just a place in their pre set, and two transition sharing the pre set are equally

labelled. Each transition in Tstrs (labelled in LS) has an empty inhibitor set, and finally each transition t ∈ Tstrs ∪ Tstrw ∪ Twk

has a key place. Therefore N is indeed a pbn. 2

Example 18. Consider the cbn depicted in Fig. 17, the initial marking has places ∗〈a,1〉, ∗〈c,1〉 and ∗〈b,0〉 marked as in

(a, c;b) none of the action has been executed. The execution of the strong action a leads to removing the token from place
∗〈a,1〉, marking the places 〈a,1〉∗ and 〈a,1〉† . This correspond to (a[k], c;b) where k correspond uniquely to 〈a,1〉† .

So far we have considered just the transitions performing forward actions, beside the move actions, where a weak action

is executed and it is reversed and its key is moved to a strong action, which will result as performed though its key is

invalidated. We now focus on the encoding of transitions corresponding to reverse actions. We start from rule str obtaining

the set of transitions

Tstr(s;b) = {〈a, i〉 | a ∈ A∧ 1 ≤ i ≤ s(a)}

The definitions of the pre and post sets are as expected.

•〈a, i〉 = {〈a, i〉∗, 〈a, i〉†} 〈a, i〉• = {∗〈a, i〉}

The inhibitor arc just checks that the reversal without move can only proceed only if no weak action has been executed as

part of either the strong or the weak prefix, i.e.,

◦〈a, i〉 = {〈c,1〉∗ | c ∈W∩ s} ∪ {〈b,0〉∗}

Labels keep track of the performed reverse action, i.e., ℓ〈a, i〉 = a. Fstr and Istr are the flow arcs and inhibitor arcs for these

transitions, ℓstr the labelling mapping.
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Tstr(a, c;b) = {〈a,1〉, 〈c,1〉}

Tstrp
(a, c;b) = {〈a, i, (b)〉}

Tstrm
(a, c;b) = {〈a, i, c〉}

∗〈c,1〉

∗〈b,0〉

∗〈a,1〉

〈c,1〉∗ 〈c,1〉†

〈b,0〉∗〈b,0〉†

〈a,1〉∗ 〈a,1〉†

〈a,1, c〉〈a,1〉

〈a,1, (b)〉

〈c,1〉

Fig. 18. Backward transitions for the encoding of (a, c;b).

The transitions of the reversal of a strong action combined with a promotion and a move discriminate situations in

which the key that is being promoted or moved is not bound anywhere else in the system from the cases in which the key

appears within other parallel process.

The transitions associated with the rule strp , i.e., a reversal followed by a promotion, are of the kind 〈a, i, (b)〉 and they

stand for the cases in which the promoted key is free while (the other cases are handled by concert rules, which will be

described when encoding the composition). Henceforth we have

Tstrp
(s;b) = {〈a, i, (b)〉 | 1 ≤ i ≤ s(a)}

and the pre sets, post sets and inhibitor sets are as follows

•〈a, i, (b)〉 = {〈a, i〉†, 〈b,0〉∗, 〈b,0〉†} 〈a, i, (b)〉• = {∗〈b,0〉} ◦〈a, i, (b)〉 = ∅

Recall that the key of b is promoted to an invalid key of a, and for this reason there is no key place in the post set of this

transition, and the key in a is removed. In this case, labels record the reversed action, i.e., ℓ〈a, i, (b)〉 = a. Fstrp
and Istrp

are the flow arcs and inhibitor arcs for these transitions, ℓstrp
the labelling mapping.

The last case, in which the reversal of a strong action is combined with a move is defined analogously, the only difference

being that the key moved is the one of c, which is in the pre set of these transitions.

Tstrm
(s;b) = {〈a, i, c〉 | a ∈ S∧ 1 ≤ i ≤ s(a) ∧ c ∈ W∩ s}

The post sets, pre sets and inhibitor sets are

•〈a, i, c〉 = {〈a, i〉†, 〈c,1〉∗, 〈c,1〉†} 〈a, i, c〉• = {∗〈c,1〉} ◦〈a, i, c〉 = {〈b,0〉∗}

The inhibitor arc is used to give priority to the promotion over the move. Also in this case, labels record the reversed action,

i.e., 〈c,a, i〉 = a. Fstrm and Istrm are the flow arcs and inhibitor arcs for these transitions, ℓstrm the labelling mapping.

Example 19. Consider the prefix (a, c;b) introduced in Example 17. The transitions corresponding to reverse actions are

shown in Fig. 18. The reversal of the weak action c in the strong part of a prefix is described by the transition 〈c,1〉 which

consumes tokens from the places 〈c,1〉∗ and 〈c,1〉† that respectively represent the execution of c and its key, and produce

a token in the place ∗〈c,1〉 that enables the execution of c. The remaining three transitions account for the reversal of the

strong action a: the transition 〈a,1〉 models the reversal of a when no successive promotion or move from a weak action is

available (for this reason the transition is inhibited by the places 〈b,0〉∗ and 〈c,1〉∗), the transition 〈a,1, (b)〉 represents the

reversal of a followed by a promotion, and 〈a,1, c〉 the reversal of a followed by a move. In the case the promotion or the

move is done, it should be noticed that despite the action a is undone, a promotion moves the key from the weak b to the

action a (or from the weak c to the action a), consequently, after reversing a, b (or c) becomes enabled and a remains as

executed. The reason why the transition consumes and reads the key 〈a,1〉† is instrumental for the encoding of the parallel

composition, as it will be clear later on. In the case of 〈a,1, c〉, the inhibitor arc originated in 〈b,0〉∗ states that promotion

has priority over moves.1

Lemma 5. Let (s;b) be a CCB prefix. Then the lipt 〈S, T , F , I, ℓ〉 where

• S = {∗〈a, i〉, 〈a, i〉∗, 〈a, i〉† | a ∈ S∧ 1 ≤ i ≤ s(a)} ∪ {∗〈c,1〉, 〈c,1〉∗, 〈c,1〉† | c ∈ W∩ s} ∪ {∗〈b,0〉, 〈b,0〉∗, 〈b,0〉†};

1 In original CCB moves are not allowed if a prefix has a weak part.
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∗〈c,1〉

∗〈b,0〉

∗〈a,1〉

〈c,1〉∗ 〈c,1〉†

〈b,0〉∗

〈b,0〉†

〈a,1〉∗

〈a,1〉†

〈c,1〉〈c,a,1〉

〈b,0〉

〈a,1〉 〈a,1, c〉〈a,1〉

〈a,1, (b)〉

〈c,1〉

Fig. 19. The net corresponding to the prefix (a, c;b) with forward and reverse transitions.

• T = Tstrs ∪ Tstrw ∪ Tstrm ∪ Twk ∪ Tstr ∪ Tstrp
∪ Tstrm ;

• F = Fstrs ∪ Fstrp ∪ Fstrm ∪ Fwk ∪ Fstr ∪ Fstrp
∪ Fstrm ;

• I = Istrw ∪ Istrm ∪ Iwk ∪ Istr ∪ Istrm , and

• ℓ = ℓstrs ∪ ℓstrw ∪ ℓstrm ∪ ℓwk ∪ ℓstr ∪ ℓstrp
∪ ℓstrm

is a cbn.

Proof. We have already seen in Lemma 4 that if we focus on the transitions in T = Tstrs ∪ Tstrw ∪ Tstrm ∪ Twk we have

an cbn. The transitions in Tstr ∪ Tstrp
∪ Tstrm are such that they consume tokens from at least a key place, hence these

transitions are in U . For each transition in t ∈ Tstrs ∪ Tstrw there is just a transition in u ∈ Tstrs ∪ Tstrw
such that •u = t• ,

u• = •t and ℓ(t) = ℓ(u) as required. Hence the net is a cbn. 2

Example 20. In the Fig. 19 the nets depicted in Fig. 17 and Fig. 18 are put together. At the beginning the places
∗〈a,1〉, ∗〈c,1〉 and ∗〈b,0〉 are marked. The execution of 〈a,1〉 will remove the token from ∗〈a,1〉 putting it in 〈a,1〉∗

and 〈a,1〉† . At this feasible marking we can reverse the last executed transition obtaining the initial marking or we can

execute the action c (〈c,1〉) marking 〈c,1〉∗ and 〈c,1〉† and after a move executing 〈a,1, c〉 has the effect of moving the key

of c to a, which will have a invalid key (the place 〈a,1〉∗ is marked but 〈a,1〉† is not).

In what follows we discuss the set of transitions corresponding to concert rules a-wk1 , a-wk2 and a-wk3.

The set of transitions induced by the rule a-wk1 is

Ta-wk1(s;b) = {〈(b),a, i〉 | a ∈ S∧ 1 ≤ i ≤ s(a)}

The inhibitor arcs for these transitions are as follows

◦〈(b),a, i〉 = {∗〈c, j〉 | 1 ≤ j ≤ s(c)} ∪ {〈b,0〉∗}

to account for the fact that the weak prefix cannot be executed until all actions in the strong part of a prefix have been

executed. The pre and post sets capture the idea that the original key associated with a is released and a becomes now

associated with the bond generated by the weak prefix, i.e.,

•〈(b),a, i〉 = {〈a, i〉†} 〈(b),a, i〉• = ∅

The associated label records both the forward and backward actions, ℓ〈(b),a, i〉 = (b),a. Again we denote these sets and

the labelling mapping with Fa-wk1 , Ia-wk1 and ℓa-wk1 .

The transitions associated with a-wk2 are

Ta-wk2(s;b) = {〈c,a, i〉 | a ∈ S∧ 1 ≤ i ≤ s(a) ∧ c ∈W∩ s}

and the pre and post set are analogous to the previous case

•〈c,a, i〉 = {〈a, i〉†} 〈c,a, i〉• = ∅ ◦〈c,a, i〉 = {〈b,1〉∗}

The inhibitor arc for each transition just checks that c has not been executed. In this case labels record that the execution

of the weak forward action and the reverse strong action in the strong part of a prefix, i.e., ℓ〈c,a, i〉 = 〈c〉,a. Fa-wk1 , Ia-wk1

and ℓa-wk1 are the flow and inhibitor arcs as well as the labelling mapping.
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Ta-wk1 (a, c;b) = {〈(b),a, i〉}

Ta-wk2
(a, c;b) = {〈c,a, i〉}

Ta-wk3
(a, c;b) = ∅

∗〈c,1〉

∗〈b,0〉

∗〈a,1〉

〈c,1〉∗ 〈c,1〉†

〈b,0〉∗

〈b,0〉† 〈a,1〉∗ 〈a,1〉†

〈(b),a,1〉 〈c,a,1〉

Fig. 20. Concerted transitions for the encoding of (a, c;b).

Finally the transitions for a-wk3 do the same work, but involve three actions. They are defined as

Ta-wk3(s;b) = {〈c,a, i,d, j〉 | a,d ∈ S∧ 1 ≤ i ≤ s(a) ∧ 1 ≤ j ≤ s(d) ∧ c ∈W∩ s}

The inhibitor arc for each transition ensures that c has not been executed.

◦〈c,a, i,d, j〉 = {〈c,1〉∗}

The pre and post set rearrange the markings to reverse a and invalidate d by associating the key borrowed from c.

•〈c,a, i,d, j〉 = {〈a, i〉∗, 〈a, i〉†, ∗〈d, j〉} 〈c,a, i,d, j〉• = {∗〈a, i〉, 〈d, j〉∗}

Labels are as before ℓ〈c,a, i,d, j〉 = 〈c〉,a. Arcs and labelling are Fa-wk3 , Ia-wk3 and ℓa-wk3 .

Example 21. Consider the prefix (a, c;b) introduced in Example 17. The transitions corresponding to concert actions are

shown in Fig. 20. Transition 〈(b),a, i〉 accounts for a prefix contributing with the reversal of a and the forward weak action

in a weak prefix, i.e., (b). It should be noted that this transition can be applied only if the weak prefix has not been executed

(i.e., inhibitor arc from 〈b,0〉∗) and no action in the strong part of a prefix is still unexecuted (i.e., the inhibitor arcs ∗〈a,1〉

and ∗〈c,1〉). Note that the bond created by the weak action will be promoted to the just reversed action. For this reason, the

firing of the transition just consumes the key 〈a, i〉† the marking; as before the apparently, superfluous consume/produce

loop on the key is instrumental for the encoding of parallel composition. The transition 〈c,a, i〉 corresponds to a prefix

contributing with a forward weak action in strong position (i.e., 〈c〉) and the reverse of a. The reversal of the weak action c

in the strong part of a prefix is described by the transition 〈c,1〉 and its definition is analogous.

Lemma 6. Let (s;b) be a CCB prefix. Then the lipt 〈S, T , F , I, ℓ〉 where

• S = {∗〈a, i〉, 〈a, i〉∗, 〈a, i〉† | a ∈ S∧ 1 ≤ i ≤ s(a)} ∪ {∗〈c,1〉, 〈c,1〉∗, 〈c,1〉† | c ∈ W∩ s} ∪ {∗〈b,0〉, 〈b,0〉∗, 〈b,0〉†};

• T = Tstrs ∪ Tstrw ∪ Tstrm ∪ Twk ∪ Tstr ∪ Tstrp
∪ Tstrm ∪ Ta-wk1 ∪ Ta-wk2 ∪ Ta-wk3 ;

• F = Fstrs ∪ Fstrw ∪ Fstrm ∪ Fwk ∪ Fstr ∪ Fstrp
∪ Fstrm ∪ Fa-wk1 ∪ Fa-wk2 ∪ Fa-wk3 ;

• I = Istrw ∪ Istrm ∪ Iwk ∪ Istr ∪ Istrm ∪ Ia-wk1 ∪ Ia-wk2 ∪ Ia-wk3 , and

• ℓ = ℓstrs ∪ ℓstrw ∪ ℓstrm ∪ ℓwk ∪ ℓstr ∪ ℓstrp
∪ ℓstrm ∪ ℓa-wk1 ∪ ℓa-wk3 ∪ ℓa-wk3

is a cbn.

Proof. We have already seen in Lemma 5 that if we focus on the transitions in Tstrs ∪ Tstrw ∪ Tstrm ∪ Twk ∪ Tstr ∪ Tstrp
∪

Tstrm we have an cbn. The new added transitions manipulate basically keys, hence are in U and are no counterpart of any

strong or weak transition. The thesis follows. 2

We now put together all the pieces we have collected so far. We write Rules for the set of the names of rules associated

with prefixes, i.e.,

Rules = {strs, strw , strm,wk, str, strp, strm,a-wk1,a-wk2,a-wk3}

Definition 22. The net N(s;b) = 〈S, T , F , I, ℓ〉 is the net associated to the prefix (s;b), where

• S = {∗〈a, i〉, 〈a, i〉∗, 〈a, i〉† | a ∈ S∧ 1 ≤ i ≤ s(a)} ∪ {∗〈c,1〉, 〈c,1〉∗, 〈c,1〉† | c ∈ W∩ s} ∪ {∗〈b,0〉, 〈b,0〉∗, 〈b,0〉†};

• T =
⋃

r∈Rules Tr(s;b),

• F =
⋃

r∈Rules Fr(s;b);

• I =
⋃

r∈Rules Ir(s;b); and
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∗〈b,0〉 ∗〈a,1〉 ∗〈c,1〉

〈b,0〉∗

〈b,0〉†

〈a,1〉∗ 〈a,1〉†

〈c,1〉∗

〈c,1〉†

〈b,0〉

〈a,1, (b)〉

〈a,1〉 〈a,1〉 〈c,a,1〉 〈a,1, c〉 〈c,1〉 〈c,1〉

〈(b),a,1〉 〈c,a,1〉

Fig. 21. The overall net of (a, c;b).

• ℓ =
⋃

r∈Rules ℓr(s;b).

Lemma 7. Let (s;b) be a prefix. Then the net N((s;b)) is a cbn.

Proof. By putting together the proofs of Lemma 4, Lemma 5 and Lemma 6. 2

We discuss now how to associate the marking M((s;b)) to the prefix (s;β) in the net N((s;b)) where possibly β = b[l]

for some key l and some of the action in s may have a key k or an invalid key †l. To ease the notation we write s

as s1 + s2 + s3 where s1 are the unexecuted actions, s2 are the actions with non-invalidated keys, and s3 actions with

invalidated keys (†). Therefore s1 ∈ NA , s2 ∈ NA×K which is a set and s3 ∈ NA×†K which is again set. Finally, given

t ∈ NA×K (or t ∈ NA×†K), with t̃ we denote the multiset in NA defined as t̃(a) =
∑

k∈K t(a,k).

The marking (we indicate only the marked places) is then

M((s;β))= {∗〈a, i〉 | 1 ≤ i ≤ s1(a) ∧ a ∈ A}

= ∪{〈a, i〉∗, 〈a, i〉† | s1(a) < i ≤ s1(a) + s̃2(a) ∧ a ∈A}

= ∪{〈a, i〉∗ | s1(a) + s̃2(a) < i ≤ s1(a) + s̃2(a) + s̃3(a)}

= ∪{∗〈b,0〉 | β = b} ∪ {〈b,0〉∗, 〈b,0〉† | β = (b, l)}

Observe that the transitions 〈a, i〉 corresponding to an a with an invalidated key has no token in the key place 〈a, i〉† .

Hereafter, we will consider nets up-to permutation of natural numbers.

Example 22. Consider the prefix (a, c;b) introduced in Example 17. The net representing all the forward (see Fig. 17),

backward (see Fig. 18) and concert (see Fig. 20) transitions is depicted in Fig. 21.

M((a, c;b)) is such that ∗〈a,1〉, ∗〈c,1〉 and ∗〈b,0〉 are marked and all the other places do not have any token.

M((a[1], c;b)) is, instead of, such that 〈a,1〉∗ , 〈a,1〉† , ∗〈c,1〉 and ∗〈b,0〉 are marked, and the other places are unmarked,

and M((a[†1], c;b)) has the places 〈a,1〉∗ , ∗〈c,1〉 and ∗〈b,0〉 marked.

The encoding of a prefixed process (s;b).S is obtained as the disjoint union of the nets encoding the prefix (s;b) and

the continuation S with the addition of the inhibitor arcs that prevent the execution of forward actions in S and reverse

actions of (s;b) as appropriate.

Definition 23. Let N = 〈S, T , F , I, ℓ〉 be a cbn such that |Y| = 1. Then minS(N) = {t ∈ T | t ∈ TC(N,1) \ weak(C(N,1)) ∧ ℓ(t) ∈

A} is the set of minimal strong transitions of N and minW(N) = weak(C(N,1)).

The idea is that minS(N) are the first transitions that have to be executed in a cbn with just one component, which

accounts to say that the cbn is a well-stratified one and minW(N) contains the unique weak transition of C(N,1).

Proposition 5. Let N = N(s;b) be the cbn associated to the prefix (s;b). Then minS(N) = Tstrs ∪ Tstrw is the set of minimal strong

transitions of N , and minW(N) = Twk .

Proof. N is a cbn and Y contains just one index. The transitions in minS(N) are precisely those with a label in A and that

are not a weak transition, and minW(N) is the unique weak transition. 2
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∗〈c,1〉

∗〈b,0〉

∗〈a,1〉

〈c,1〉∗
〈b,0〉∗

〈a,1〉∗ 〈c,1〉†

〈b,0〉†

〈a,1〉†

∗〈d,1〉

〈d,1〉∗ 〈d,1〉†

∗〈e,0〉

〈e,0〉∗

〈e,0〉†

〈c,1〉

〈b,0〉〈a,1〉

〈d,1〉

〈e,0〉

Fig. 22. The net N((a,c;b).(d; e)) without the reversing, the move, the promotions and the concerting transitions.

With the aid of the notions of minimal transitions we can state what is the encoding of the CCB process (s;b).S.

Definition 24. Let (s;b).S be a CCB process, N(S) = 〈SS, TS, FS, IS, ℓS〉 and N(s;b) = 〈S(s;b), T(s;b), F(s;b), I(s;b), ℓ(s;b)〉 be the

nets associated with S and N(s;b). Then, N((s;b).S) is the net defined as

• S(s;b).P = SS ⊎ S(s;b);

• T(s;b).P = TS ⊎ T(s;b);

• F(s;b).P = FS ⊎ F(s;b);

• I(s;b).P = IS ⊎ I(s;b) ∪ Fw ∪ Bw, where Fw= ({∗〈a, i〉 ∈ S(s;b)} ∪ {〈b,0〉∗}) × minS(N(S)) and Bw= minS(N(S))• × T(s;b);

and

• ℓ(s;b).S = ℓS ⊎ ℓ(s;b) .

The causal constraints imposed by the prefix operator are captured by the inhibitor arcs in Fw and Bw. The set Fw

gives the constraints for the forward execution. Intuitively, a forward transition 〈c, i〉 in N(S) that is initially enabled (i.e.,

〈c, i〉 ∈ minS(N(S))) is inhibited because either (i) an action a in the strong part of the prefix s has not be fired (i.e., a place
∗〈a, i〉 is marked) or (ii) the weak prefix b has been already fired (i.e., 〈b,0〉∗ is marked). The constraints for reversibility

are stated by Bw, and basically says that any transition t of the prefix is inhibited if any action in the continuation has been

executed, i.e., a place in the post set of some of the minimal transitions in N(P ) is marked.

Example 23. In Fig. 22 the forward transitions of the term (a,c;b).(d; e) are depicted, highlighting how the two compo-

nents, the one corresponding to (a,c;b) and the other to (d; e) are connected with the inhibitor arcs. It should be stressed

that all the other transitions of (a,c;b) are inhibited when one of (d; e) is executed.

Lemma 8. The net N(S) is an cbn.

Proof. The proof is by induction on the structure of S. We prove that the net is a cbn and it has just one component. If S

is 0 then the thesis follows Consider S as (s;b).S′ and by inductive hypothesis that N(S′) is a cbn and it is such that Y has

just one element N(S′) is a well-stratified pbn. Then N((s;b).S′) is by construction a well-stratified pbn, and then it is a

cbn as required. 2

The marking associated to (s;β).S, where again β = b[l] for some key l and some of the action in s may have a key k or

an invalid key †l, is then the union of M((s;β)) and M(S) which is well defined as the places of the net are disjoint.

Example 24. Consider the net partially shown in Fig. 22 where just the forward transitions of (a,c;b).(d; e) are shown, and

consider (a[1],c[2];b).(d[3]; e). In this case the marked places are ∗〈b,0〉, ∗〈e,0〉, 〈a,1〉∗ , 〈c,1〉∗ , 〈d,1〉∗ , 〈a,1〉† , 〈c,1〉†

and 〈d,1〉† .

It should be underlined that std(S) is defined by considering all the places of the kind ∗〈x, i〉 marked in M(S), where x

is the name of an action and this gives a straightforward implementation of the predicate std(S). It remains to discuss how
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the rules for composition of CCB terms are encoded. We write γ (t1, t2) in lieu of γ (ℓ(t1), ℓ(t2)). Given two disjoint nets

N1 and N2 defined as Ni = 〈S i, T i, F i, I i, ℓi〉, we write (N1‖N2) for the set of transitions for forward synchronisations, aka

bonds, is defined as

T(N1‖N2) = {〈t1‖t2〉 | t1 ∈ T1 ∧ t2 ∈ T2 ∧ γ (t1, t2)↓}

The function bk(_) takes a place, an action and a possible synchronisation (bond) and gives a new key place stating

that the synchronisation (bond) has been executed and the place concerns that action, and otherwise it gives the place it

received in input:

bk(p,a,α) =

{
α〈a, i〉† if p = 〈a, i〉† ∧ i > 0

p otherwise

This mapping transforms a key 〈a, i〉† (representing an unbound key) by another one α〈a, i〉† representing a fresh key for

the action a generated by the synchonisation α. We also use bk(_) for its obvious extension to set of places.

Therefore, taking the bond 〈t1‖t2〉 ∈ T(N1‖N2) we connect it to the places in N1 and N2 as follows:

•〈t1‖t2〉= •t1 ∪ •t2

〈t1‖t2〉
• = bk(t1

•, ℓ(t1), 〈t1‖t2〉) ∪ bk(t2
•, ℓ(t2), 〈t1‖t2〉)

◦〈t1‖t2〉= ◦t1 ∪ ◦t2

Every transition t1‖t2 represents the synchronisation of two forward actions, one from each net. It basically describes

the jointly execution of the two transitions. For this reason, the pre, post and inhibitor set roughly corresponds to the union

of the respective set, with the amendment of generating a new pair of keys, i.e., if 〈a, j〉† ∈ ti
• , with i ∈ {1,2} that key

is represented by (t1‖t2)〈a, j〉† . In this way we will distinguish among the concurrent execution of t1 and t2 from their

synchronised execution t1‖t2 by associating a different keys of one with respect to the other.

Example 25. Consider Si = (ai, ci;bi) for i = 1,2 and assume a synchronisation algebra γ , defined such that γ (a1,a2) = a,

γ (b1,b2) = b and γ (c1, c2) = c. Let Ni =N(Si), which are isomorphic to N((a, c;b)) in the Example 17. Then,

T(N1‖N2) = {〈〈a1,1〉‖〈a2,1〉〉, 〈〈c1,1〉‖〈c2,1〉〉, 〈〈c1,1〉‖〈c2,a2,1〉〉, 〈〈c1,a1,1〉‖〈c2,1〉〉}

we use to keys for this transitions, one to be use to promote on the left and on other on the right.

α = 〈〈a1,1〉‖〈a2,1〉〉 : •α = {∗〈a1,1〉,
∗〈a2,1〉}

α• = {〈a1,1〉
∗, 〈a2,1〉

∗,α〈a1,1〉
†,α〈a2,1〉

†}
◦α = ∅

α = 〈〈c1,1〉‖〈c2,1〉〉 : •α = {∗〈c1,1〉,
∗〈c2,1〉}

α• = {〈c1,1〉
∗, 〈c2,1〉

∗,α〈c1,1〉
†,α〈c2,1〉

†}
◦α = {∗〈a1,1〉,

∗〈a2,1〉}

α = 〈〈c1,1〉‖〈c2,a2,1〉〉 : •α = {∗〈c1,1〉,
∗〈a2,1〉}

α• = {〈c1,1〉
∗,α〈c1,1〉

†, 〈a2,1〉
∗}

◦α = {∗〈a1,1〉, 〈c2,1〉
∗}

The last one, i.e., 〈c1,a1,1‖c2,1〉 is defined analogously. The labelling of these transitions is

ℓ〈t‖t′〉 = γ (t, t′)

Fig. 23 illustrates the case for 〈〈a1,1〉‖〈a2,1〉〉. It should be noted that 〈〈a1,1〉‖〈a2,1〉〉 produces in α〈a1,1〉
† and α〈a2,1〉

†

instead of in 〈a1,1〉
† and 〈a2,1〉

† , as done by the transitions 〈a1,1〉 and 〈a1,2〉. In this way, none of the reversing rules

(Fig. 20) can be applied to undone a1 and a2 independently; they need to be reversed in a coordinated way, as will be

described later.

The bk(t,a,α) used previously can be considered as a kind of template for the concerting rules (among those there

are also the reversing ones), hence we define bt(t,a,α) as the transition such that •bt(t,a,α) = bk(•t,a,α),bt(t,a,α)• =

bk(t•,a,α) and ◦bt(t,a,α) = bk(◦t,a,α). This notation will help to define the templates for the concerted action. To un-

derstand which templates should be considered, we need to understand which are the possible participants to a concerted

action, which is the result of the concerted rule. Let t be a transition such that 〈a, j〉† ∈ •t , all its versions that can be

considered in concerting with respect to a set of synchronisation S are the following:
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∗〈a2,1〉

〈a2,1〉
∗

〈a2,1〉
†

〈a2,1〉

∗〈a1,1〉

〈a1,1〉
∗

〈a1,1〉
†

〈a1,1〉

α〈a1,1〉
† α〈a2,1〉

†

α = 〈〈a1,1〉‖〈a2,1〉〉

Fig. 23. Forward synchronisations of a in (a, c;b)‖(a, c;b).

conc(t,S) = T1 ∪ T2

where

T1 = {bt(t,a,α) | 〈a, j〉† ∈ •t ∧ α ∈ S}

T2 = {bt(bt(t,a,α), c, β) | {〈a, j〉†, 〈c,1〉†} ⊆ •t ∧ α, β ∈ S}

conc(·, ·) scales to subset of transitions: conc(T ,S) =
⋃

t∈T conc(t,S). The idea is that any transition in T gives place to

another version of it in which the keys corresponds to some of the possible synchronisations in S (the T1 part) and the

second one (T2) is for transitions 〈a, i, c〉, which may have also a bounded key that will be invalidated. The set conc(T ,S)

contains transitions that cannot be used, but they are sorted out when actually combining them in parallel (concerting

them). For the time being, the set of candidate bonded synchronisations is:

T1 ⊕ T2 = {〈t1 ⊕ t2〉 | t1 ∈ conc(T1, T1‖T2) ∧ t2 ∈ conc(T2, T1‖T2)}

We will take pairs of transitions that require the same key. We say two transitions t and t′ agree on the bounded keys for a

and b, written t{a = b}t′ , if and only if ∃α, i, j.α〈a, i〉† ∈ •t ∧ α〈b, j〉† ∈ •t′ , and the α implies that they come from the

same synchronization; We also say that t does not use a bond on a, written t{6= a}, if does not use a bond key for it, i.e.,

t{6= a} ⇐⇒ ¬∃α, i.α〈a, i〉† ∈ •t .

We will use the labels to filter out the allowed combinations, and we obtain the following sets of concerting transitions,

which contains also the standard reversing for bonds:

T A = {〈t1 ⊕ t2〉 | ℓ(t1) = a∧ ℓ(t2) = b∧ t{a= b}t′ ∧ γ (a,b) ↓}

T B = {〈t1 ⊕ t2〉 | ℓ(t1) = a∧ ℓ(t2) = b∧ t1{6= a} ∧ t2{6= b}}

TC = {〈t1 ⊕ t2〉 | ℓ(t1) = a, (b) ∧ ℓ(t2) = c ∧ t1{6= a}}

TD = {〈t1 ⊕ t2〉 | ℓ(t1) = a, (b) ∧ ℓ(t2) = d∧ t1{a= d}t2}

T E = {〈t1 ⊕ t2〉 | ℓ(t1) = a,d, (b) ∧ ℓ(t2) ∈ {c, c, 〈c〉} ∧ γ (a,d) ↓,γ (b, c) ↓}

T F = {〈t1 ⊕ t2〉 | ℓ(t1) = a, (b),β ∧ β ∈ {c, c, 〈c〉} ∧ ℓ(t2) = d∧ γ (a,d) ↓,γ (b, c) ↓}

TG = {〈t1 ⊕ t2〉 | ℓ(t1) = a, (b) ∧ ℓ(t2) ∈ d, β ∧ β ∈ {c, c, 〈c〉} ∧ γ (a,d) ↓,γ (b, c) ↓}

The above sets are related with the possible synchronisations involving reverse actions. As a matter of fact, T A stands for

the transitions corresponding to rule (com), i.e., the synchronisation of reverse actions. All the remaining ones, correspond

to rule (concert par), and are associated with the definition of the operator ⊕ on CCB labels. The sets T B , TC and TD

corresponds respectively to the first three cases in the definition of ⊕, while the final three corresponds to the last case in

the definition of ⊕ (we have split the cases here for technical convenience).

Then, the set of reverse and concerted transitions is therefore

T(N1‖N2) = T A ∪ T B ∪ TC ∪ TD ∪ T F ∪ TG ∪ T E

The set of transitions T A contains the expected reverse of a bond transition, whereas the others cases contains the transi-

tions needed for concerting.

In all cases, the pre sets and inhibitor arcs are straightforward, i.e.,

•〈t1 ⊕ t2〉 = •t1 ∪ •t2
◦〈t1 ⊕ t2〉 = ◦t1 ∪ ◦t2

For the post sets, the only provision is the cases in which there exists c s.t. 〈c,1〉† ∈ t1
• ∪ t2

• . Consider (a[k]; c)‖(a[k];d)‖

(e[ j], c;d) where each action synchronises with itself. A concert rule allows to reach (a[†l]; c)‖(a;d)‖(e[ j], c[l];d). Here the

question is which key we should associate to the prefix c[l]. Since its not free, it cannot be reversed, hence we cannot mark

〈c,1〉† . For this reason, we consider a further key ̹〈c,1〉† for every weak action in the strong part of the prefix. We can

now establish the post sets of the transitions in
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∗〈a2,1〉

〈a2,1〉
∗

〈a2,1〉
†

〈a2,1〉

∗〈a1,1〉

〈a1,1〉
∗

〈a1,1〉
†

〈a1,1〉

α〈a1,1〉
† α〈a2,1〉

†

α = 〈〈a1,1〉‖〈a2,1〉〉 α = 〈〈a1,1〉‖〈a2,1〉〉

Fig. 24. Reverse of the synchronisations of a in (a, c;b)‖(a, c;b).

∗〈c,1〉

〈c,1〉∗ 〈c,1〉†

〈c,1〉

∗〈a,1〉

〈a,1〉∗〈a,1〉†

〈a,1〉

α〈c,1〉† α〈a2,1〉
†

α = 〈〈a,1〉‖〈c,1〉〉

∗〈d,0〉

〈d,0〉∗

〈d,0〉†

〈d,0〉

∗〈b,0〉

〈b,0〉∗

〈b,0〉†

〈b,0〉

((b),a,1) ((d),c,1)((b),a,1) ⊕ ((d),c,1)

Fig. 25. Concerting in (a;b)‖(c;d) with γ (a,c) ↓ and γ (b,d) ↓.

〈t1 ⊕ t2〉
• =

{
bk(t1

• ∪ t2
•, c, ̹) 〈t1 ⊕ t2〉 /∈ T B ∧ ∃c.〈c,1〉† ∈ t1

• ∪ t2
•

t1
• ∪ t2

•

Example 26. We illustrate the case discussed above by showing what happens when considering 〈〈(b1),a1,1〉 ⊕ 〈c2,a2,1〉〉

assuming that γ (b1, c2) and γ (a1,a2) are defined. This will generate the key place ̹〈c2,1〉
† .

As before, abusing from notation, we have the new transitions defined as

̹t =

{
bk(t, c, ̹) if∃c.〈c,1〉† ∈ •t

t otherwise

This is lifted to sets of transitions as follows

̹T = {̹t | t ∈ (T \ {〈c,1〉 | c ∈W}) ∧ ∃c.〈c,1〉† ∈ •t}

Example 27. The Fig. 24 shows a part of the net associated to (a, c;b)‖(a, c;b) with a forward synchronization and the

transition implementing the reverse of this transition (which belongs to T A in T(N1‖N2)). In the Fig. 25 it is shown how

the transitions ((b),a,1) and ((d),c,1) are concerted together (which belongs to TG in T(N1‖N2)) where N1 =N((a;b)) and

N2 = N((c;d)). The net N((a;b)‖(c;d)) is partially depicted.

We are now ready to show how to encode the parallel composition of two CCB terms.

Definition 25. Let P1 and P2 be two CCB terms and N(Pi) = Ni with Ni = 〈S i, T i, F i, I i, ℓi〉 for i = 1,2, the associated cbns,

which we assume to be disjoint (i.e., S1 ∩ S2 = ∅ and T1 ∩ T2 = ∅). Then N(P1‖P2) is the net 〈S, T , F , I, ℓ〉 where

• S = S1 ∪ S2 ∪ S(N1‖N2) ∪ S(N1‖N2) ∪ S̹(T1∪T2);

• T = T1 ∪ T2 ∪ T(N1‖N2) ∪ T(N1‖N2) ∪ T̹(T1∪T2);

• F = F1 ∪ F2 ∪ F(N1,N2) ∪ F(N1‖N2) ∪ F̹(T1∪T2);

• I = I1 ∪ I2 ∪ I(N1,N2) ∪ I(N1‖N2) ∪ I̹(T1∪T2); and
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∗〈b,1〉

〈b,1〉∗ 〈b,1〉†

〈b,1〉

∗〈a,1〉

〈a,1〉∗〈a,1〉†

〈a,1〉

α〈a,1〉† α〈b,1〉†

α = 〈〈a,1〉‖〈b,1〉〉

Fig. 26. Part of the net N((a; c)‖(b;d)).

• ℓ = ℓ1 ∪ ℓ2 ∪ ℓ(N1‖N2) ∪ ℓ(N1‖N2) ∪ ℓ̹(T1∪T2)

where Snk, Fnk, Ink and ℓnk , with nk ∈ {(N1‖N2), (N1‖N2), ̹(T1 ∪ T2)} are defined as illustrated above.

We have again an cbn, as shown by the following result.

Lemma 9. Let P1 and P2 be two CCB terms and N(Pi) = 〈S i, T i, F i, I i, ℓi〉 for i = 1,2, the associated disjoint cbns. Then N(P1‖P2)

is a cbn.

Proof. As N(Pi) = 〈S i, T i, F i, I i, ℓi〉 are cbns, there exists for each a partition with Yi for i = 1,2. Now, the only requirement

to check is that if we are considering a bond between the two, there is one of the reversing bond. But this is clear by

constructions (these are the transition in T A above). The thesis follows. 2

The marking associated with P1‖P2 cannot be straightforwardly inferred from the markings M(Pi) because of the loose

of information about keys. Consider the process (a[1];b)‖(a[1]; c) and note that “1” is a shared key. If processes (a[1];b)

and (a[1]; c) are taken independently, such shared key would be considered as two different private ones; hence the two

actions a would appear as executed independently. For this reason, we substitute shared keys in a parallel composition

P1‖P2 by invalidated keys (recall that invalidated keys translates into unmarked key places). For each shared key, we

record the transitions names. Then, for these pairs of names, we mark the key places of the synchronization. Given P1‖P2 ,

φ(P1‖P2) gives the set of shared keys together with the names of the transitions in each of the nets N(Pi) they are

associated to, and in P1‖P2 it substitutes the shared key with an invalid one. More formally for each k ∈ key(P1) ∩ key(P2)

the mapping returns the triple (k, t1, t2) where ti are the transitions in N(Pi) which corresponds to the actions in P1 and P2
with that key, and at the same time invalidate the key in P1‖P2 . The triple (k, t1, t2) is used to mark the places α〈a, i〉† and

α〈b, j〉† , where a and b are the actions with the same key and α is 〈t1‖t2〉, which are the key places added by the various

bonds. Thus φ(P1‖P2) = (�,P′
1‖P

′
2) where � is the set of triples and P̂1‖P̂2 is the CCB term where the various shared keys

have been invalidated. Hence when defining M(P1‖P2) we have M(P̂1) ∪ M(P̂2) ∪ {α(ti)
† | ∃(k, t1, t2) ∈ � ∧ α = t1⊕t2}

where (ti)
† is the key place associated to the transition ti (Fig. 26).

Example 28. Consider (a[1]; c)‖(b[1];d) and assume that γ on (a,b) is defined. Then φ((a[1]; c)‖(b[1];d)) gives � =

{(1, 〈a,1〉, 〈b,1〉} and (a[†1]; c)‖(b[†1];d) and M((a[1]; c)‖(b[1];d)) is M((a[†1]; c)) ∪M((b[†1];d)) ∪ {α〈a,1〉†,α〈b,1〉†}.

The last operation we have to encode is the restriction.

Definition 26. Let P be a CCB term and let N(P) = 〈SP, TP, FP, IP, ℓP〉 be the associated cbn. Then N(P \ L) is the net

〈S, T , F , I, ℓ〉 where S = SP ⊎ {sx | x ∈ L}, T = TP , F = FP , ℓ = ℓP and I = IP ⊎ {(sx, t) | x ∈ L ∧ ℓP(t) = x}.

Obviously we have that the resulting construction is a cbn.

Lemma 10. Let P \ L be a CCB term. Then N(P \ L) is a cbn.

The marking associated to the term P \ L in the net N(P \ L) is M(P).

We can now put together what we have seen so far and we have the following result, which summarize that our

encoding gives a covalent bond net.

Theorem 1. Let P be a CCB term, then N(P) is a cbn.
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We prove now that our encoding is full and faithful, meaning that each move in the transition system associated to the

CCB terms is matched by a fireable transition in the encoding of the term, and if one fires a transition in the net which

encodes a CCB term, then the corresponding move can be performed also on the term.

We write µ ≡ L if L is obtained by removing the keys in µ. Moreover, we write N(P)
L
−→ N(Q) if there exists a transition

t with label L, i.e., ℓ(t) = L that is enabled at (N(P),M(P)) and (N(Q),M(Q)) is the result of firing t in (N(P),M(P)).

Theorem 2. If P is well-formed then

1. if P
µ
−→ Q then N(P)

L
−→ N(Q) and µ ≡ L; and

2. if N(P)
L
−→ (N,m) then there exists Q such that (N, m) =N(Q) and P

µ
−→ Q and µ ≡ L.

Proof. (1) It follows by induction on the structure of the derivation P
µ
−→ Q. We show a few interesting cases.

(Case strs) P = (a, s;b).S, and P′ = (a[k], s;b).S, and µ = a[k] and a ∈ S, and std(S) and fresh(k, s). Then, (N,m) =

(N(a, s;b),M(a, s;b)). By definition of the encoding there exists j such that 〈a, j〉 ∈ Tstrs ((a, s;b)) and ℓ〈a, j〉 = a

and ∗〈a, j〉 ∈ m. Since S is standard, minS(NS)
• = ∅, hence ◦〈a, j〉 = ∅. Consequently, (N,m)

a
−→ (N,m \ {∗〈a, j〉} ∪

{〈a, j〉∗, 〈a, j〉†}) = (N((a[k], s;b).S),M((a[k], s;b).S).

(Case strm) P= (c,a, s;b).S, and P′ = (c,a[†l], s;b).S, and µ = c[k], and std(S) and fresh(k, t). Then, (N,m) = (N((c,a, s;b)),

M((c,a, s;b))). By definition of encoding 〈c,a, i〉 ∈ Tstrm (c,a, s;b) and ℓ〈c,a, i〉 = c and ∗〈a, i〉 ∈ m. Moreover, m(〈〈c,1〉∗〉)=

0 (because c appears without key in the prefix). Hence, 〈c,a, i〉 is enabled. Then, (N,m)
a
−→ (N, (m \ {∗〈a, i〉)} ∪ {〈a, i〉∗)} =

(N((c,a[†l], s;b).S),M((c,a[†l], s;b).S)) (note that the transition does not produce a token in the place 〈a, i〉† , hence the

key associated with 〈a, i)〉 is invalidated).

(Case wk) P = (t;b).S, and P′ = (t;b[k]).S, and µ = (b)[k] and std(S), and fresh(k, t). By definition of encoding 〈b,0〉 ∈

Twk(t;b) and ℓ〈b,0〉 = b and ∗〈b,0〉 ∈ m. Moreover, for all a ∈ A and 1 ≤ j ≤ t(a) we have ∗〈a, i〉 /∈ m (because t ∈ NA×K).

Hence, 〈b,0〉 is enabled and the proof is completed as in the previous case.

(Case com) P= P ‖ Q, P′ = P′ ‖ Q′ , µ = γ (a,c)[k] and P
a[k]
−−→ P′ and Q

c[k]
−−→ Q′ . By inductive hypothesis, N(P)

a
−→ N(P′) and

N(Q)
c
−→N(Q′). Hence, there are two transitions t1 and t2 s.t. •t1 ⊆M(P) and ℓ(t1) = a and •t2 ⊆ M(Q) and ℓ(t2) = c. Hence,

t1‖t2 ∈ TP‖Q . By inspecting the rules that have label in A that are in the domain on γ , we conclude that they are transitions

of the shape of Tstrs , Tstrw , ore Tstrm (a, c;b). Since the presets in all cases are of the form ∗〈a, i〉, it holds that •ti ⊆ M(P‖Q)

implies •(t1‖t2) ⊆ M(P‖Q). By definition of the encoding, it is also the case that ◦t1 ∩M(P) = ∅ and ◦t2 ∩M(Q) = ∅, which

imply ◦t1‖t2 ∩M(P‖Q) = ∅. Hence t1‖t2 is enabled at M(P‖Q). Consequently, N(P‖Q)
γ (a,c)
−−−−→N(P′‖Q′).

(Case com) P= P ‖ Q, P′ = P′ ‖ Q′ , µ = γ (a,c)[k] and P
a[k]
−−→ P′ and Q

c[k]
−−→ Q′ . By inductive hypothesis, N(P)

a
−→ N(P′) and

N(Q)
c
−→ N(Q′). Hence, there are two transitions t1 and t2 s.t. •t1 ⊆ M(P) and ℓ(t1) = a and •t2 ⊆ M(Q) and ℓ(t2) = c.

By inspecting the rules that have label in A s.t. the forward transition is the domain on γ , we conclude that they are

transitions of the shape of Tstr ∪ Tstrp
∪ Tstrm . We analyse the case in which t1 comes from which Tstrm (the other follows

by analogous arguments). Hence, t1 = 〈a, i,d〉, •〈a, i,d〉 = {〈a, i〉†, 〈d,1〉∗, 〈d,1〉†}, 〈a, i,d〉• = {∗〈d,1〉}, ◦〈a, i,d〉 = {〈b,0〉∗}.

First note that 〈a, i〉† /∈ M(P‖Q) (because the key between a and c is bound). By definition of the encoding, there should

some synchronisation α ∈ N(P‖Q) such that α〈a, i〉† ∈ M(P‖Q). In case 〈d,1〉† ∈ M(P‖Q), we can conclude that bt(t,a,α)

is enabled at M(P‖Q). If 〈d,1〉† /∈ M(P‖Q), then, there exists a synchronisation β such that bt(bt(t,a,α), c, β) is enabled at

M(P‖Q). Call such transition t′1 . By reasoning analogously for t2 , we can conclude that there is a transition t′2 enabled at

M(P‖Q). Consequently, there is a transition 〈t′1 ⊕ t′2〉 (coming from T A ) that is enabled at M(P‖Q). Hence, we can conclude

that N(P‖Q)
γ (a,c)

−−−−→N(P′‖Q′).

(2) follows by induction on the structure of P. Let t be the fired transition and note that ℓ(t) = L. Hence,

(N(P),M(P))
L
−→ (N(P),M(P)\•t ∪ t•)

(Case P= α.S). Then, N(P) = N(α.S) and M(P) =M(α.S) = M(α) ⊎M(S). By Definition 24, there are two cases:

• t ∈ Tα : (N(α.S),M(α.S))
L
−→ (N(α.S),M(α)\•t ∪ t• ⊎M(S)).

We first note that minS(N(S))• ∩ M(α.S) = ∅, otherwise t would not be enabled because of the inhibitor arcs in

Bw from Definition 24. Therefore S is standard. We proceed by case analysis on the shape of t . We illustrate the case

28
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in which t ∈ Tstrs (α) (the remaining cases follow analogously). There must exist a, s, b and j such that α = (a, s;b),

〈a, j〉 ∈ Tstrs (α) and ℓ〈a, j〉 = a= L and ∗〈a, j〉 ∈ M(α). Consequently,

(N(α.S),M(α) ⊎M(S))
a
−→ (N(α.S),M(α) \ {∗〈a, j〉} ∪ {〈a, j〉∗, 〈a, j〉†} ⊎M(S))

Since S is standard, we have that α.S= (a, s;b).S
a[k]
−−→ (a[k], s;b).S by rule (strs). The proof is completed by taking

Q= (a[k], s;b).S and µ = a[k] and noting that M(Q) = M(α) \ {∗〈a, j〉} ∪ {〈a, j〉∗, 〈a, j〉†} ⊎M(S).

• t ∈ TS . We have M(α.S) ∩ {∗〈a, i〉 ∈ S(s;b)} ∪ {〈b,0〉∗}) = ∅, as otherwise t would not be enabled because of the inhibitor

arcs in Fw. Hence, α = (t;b). The proof is completed by applying inductive hypothesis and (cont).

(Case P = P1 | P2). If t ∈ TPi
then the proof follows by inductive hypothesis and rule Par. If t ∈ T(P1‖P2) , then there exist

t1 ∈ TP1 and t2 ∈ TP2 and γ (t1, t2)↓. The proof is completed by applying inductive hypothesis on both t1 and t2 and rule

Com. If t ∈ T(P1‖P2) ∪ T̹(P1‖P2) , then the proof follows by applying inductive hypothesis and rule (com).

(Case P= S \ L) It follows by inductive hypothesis and rule (res). 2

To recover the original CCB one has simply to restrict the actions/transitions to those with the allowed labels.

7. Conclusions

We have investigated how a calculus for covalent bonding can be rendered into Petri nets in a compositional and con-

servative way. We started from the Calculus of Covalent Bonding (CCB) [31,8]. In this calculus created bonds (interactions

between actions) can be broken (aka reversed) concerting them with other actions or bonds. Indeed, the concerting capa-

bility is the distinguishing feature of the calculus. We have first faced some critical issues the act of concerting has. One

difficulty stems from the fact that a concerted action involves the formation of a weak bond along with the undoing of a

strong one. Another one concerns weak bonds that can be promoted (e.g., passed) to strong ones. To overcome these criti-

calities we have remodelled the CCB semantics to make it compositional, remaining consistent with the original semantics

as it is described in [8], and we have therefore proposed rules mimicking, in a compositional fashion, the concert rules

and the pre-congruence ones. We stress that, being our proposal on CCB a conservative one, all the interesting biochemical

reactions which are described as CCB processes can be described using our set of rules.

We have then introduced a class of Petri nets, called covalent bond nets (cbns), where dependencies among actions are

modelled via inhibitor arcs, similarly to what is done in [17]. Following [18] we have then presented a compositional en-

coding of the (compositional) CCB to bond nets. Needless to say the main difficulties arise when composing in parallel two

bond nets derived from two CCB processes. This is due to the fact that one has to account for all the possible synchroni-

sations, concerted actions and promotions of bonds. Concerted actions are the most difficult ones to rend on a net, as they

have to mimic several derivations of the calculus in just one firing. One peculiarity of our encoding is that keys are rendered

as extra places, marking the fact that a certain action have been done. We stress that in our net encoding all the auxiliary

predicates like fresh or std are hardwired. Keys are represented, in the net encoding, as key places, which implies that it is

unnecessary to check whether the key is available or not. Well-stratifiedness engineers the predicate std.

Our main results are stated by Theorem 1 and Theorem 2. Theorem 1 serves as sanity check of our encoding, and tells

us that a net derived from the encoding of a CCB terms is indeed a cbn. Theorem 2 states an operational correspondence

between CCB term and its net counterpart.

The net encoding of a CCB term have advantages stemming from the Petri Nets world, for instance analysis techniques

arising from the Petri Nets world can be fruitfully used, or the usage of behavioural equivalences originated in the Petri Nets

theory. It has a drawback that all these encodings have, namely that the need of representing all the possible interactions

using transitions makes the net rather big. We however stress that this is also a problem when considering the computations

of a CCB term.

Several possible lines of future work can be envisaged. The first one could be to see what whether cbns can be rendered

into reversible Prime Event structures [42] following the construction of [17]. Also we could resort to colours in our bond

nets to avoid some extra machinery in the parallel composition. This would allow us to integrate it with the CPN tool [43],

and to have an integrated tool for modelling bonds.
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Highlights

• We equip the Covalent Bond Calculus with a compositional semantics.

• We introduce a new kind of nets with inhibitor arcs (Covalent Bond Nets) that are tailored to capture the phenomena

modelled by a calculus like the one with covalent bonds.

• we give a suitable encoding of the calculus into Covalent Bond Nets.

• we show that the calculus and the encoding agree operationally.
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