14,166 research outputs found

    Synthesis and Optimization of Reversible Circuits - A Survey

    Full text link
    Reversible logic circuits have been historically motivated by theoretical research in low-power electronics as well as practical improvement of bit-manipulation transforms in cryptography and computer graphics. Recently, reversible circuits have attracted interest as components of quantum algorithms, as well as in photonic and nano-computing technologies where some switching devices offer no signal gain. Research in generating reversible logic distinguishes between circuit synthesis, post-synthesis optimization, and technology mapping. In this survey, we review algorithmic paradigms --- search-based, cycle-based, transformation-based, and BDD-based --- as well as specific algorithms for reversible synthesis, both exact and heuristic. We conclude the survey by outlining key open challenges in synthesis of reversible and quantum logic, as well as most common misconceptions.Comment: 34 pages, 15 figures, 2 table

    Reversible Logic Circuit Synthesis

    Full text link
    Reversible or information-lossless circuits have applications in digital signal processing, communication, computer graphics and cryptography. They are also a fundamental requirement in the emerging field of quantum computation. We investigate the synthesis of reversible circuits that employ a minimum number of gates and contain no redundant input-output line-pairs (temporary storage channels). We prove constructively that every even permutation can be implemented without temporary storage using NOT, CNOT and TOFFOLI gates. We describe an algorithm for the synthesis of optimal circuits and study the reversible functions on three wires, reporting distributions of circuit sizes. We study circuit decompositions of reversible circuits where gates of the same type are next to each other. Finally, in an application important to quantum computing, we synthesize oracle circuits for Grover's search algorithm, and show a significant improvement over a previously proposed synthesis algorithm.Comment: 30 pages, 14 figs+tables. To appear in IEEE Transactions on Computer-Aided Design of Electronic Circuits. Contains results presented at the Intl. Conf. on Computer-Aided Design, 2002 and new material on decompositions of reversible circuits where gates of the same type are next to each othe

    Heuristic synthesis of reversible logic - a comparative study

    Get PDF
    Reversible logic circuits have been historically motivated by theoretical research in low-power, and recently attracted interest as components of the quantum algorithm, optical computing and nanotechnology. However due to the intrinsic property of reversible logic, traditional irreversible logic design and synthesis methods cannot be carried out. Thus a new set of algorithms are developed correctly to synthesize reversible logic circuit. This paper presents a comprehensive literature review with comparative study on heuristic based reversible logic synthesis. It reviews a range of heuristic based reversible logic synthesis techniques reported by researchers (BDD-based, cycle-based, search-based, non-search-based, rule-based, transformation-based, and ESOP-based). All techniques are described in detail and summarized in a table based on their features, limitation, library used and their consideration metric. Benchmark comparison of gate count and quantum cost are analysed for each synthesis technique. Comparing the synthesis algorithm outputs over the years, it can be observed that different approach has been used for the synthesis of reversible circuit. However, the improvements are not significant. Quantum cost and gate count has improved over the years, but arguments and debates are still on certain issues such as the issue of garbage outputs that remain the same. This paper provides the information of all heuristic based synthesis of reversible logic method proposed over the years. All techniques are explained in detail and thus informative for new reversible logic researchers and bridging the knowledge gap in this area

    Heuristic Synthesis of Reversible Logic – A Comparative Study

    Get PDF
    Reversible logic circuits have been historically motivated by theoretical research in low-power, and recently attracted interest as components of the quantum algorithm, optical computing and nanotechnology. However due to the intrinsic property of reversible logic, traditional irreversible logic design and synthesis methods cannot be carried out. Thus a new set of algorithms are developed correctly to synthesize reversible logic circuit. This paper presents a comprehensive literature review with comparative study on heuristic based reversible logic synthesis. It reviews a range of heuristic based reversible logic synthesis techniques reported by researchers (BDD-based, cycle-based, search-based, non-search-based, rule-based, transformation-based, and ESOP-based). All techniques are described in detail and summarized in a table based on their features, limitation, library used and their consideration metric. Benchmark comparison of gate count and quantum cost are analysed for each synthesis technique. Comparing the synthesis algorithm outputs over the years, it can be observed that different approach has been used for the synthesis of reversible circuit. However, the improvements are not significant. Quantum cost and gate count has improved over the years, but arguments and debates are still on certain issues such as the issue of garbage outputs that remain the same. This paper provides the information of all heuristic based synthesis of reversible logic method proposed over the years. All techniques are explained in detail and thus informative for new reversible logic researchers and bridging the knowledge gap in this area

    Design and synthesis of reversible logic

    Get PDF
    Energy lost during computation is an important issue for digital design. Today, all electronics devices suffer from energy lost due to the conventional logic system used. The amount of energy loss in the form of heat leads to immense challenges in nowadays circuit design. To overcome that, reversible logic has been invented. Since properties of reversible logic differ greatly than conventional logic, synthesis methods used for conventional logic cannot be used in reversible logic. In this dissertation, we proposed new synthesis algorithms and several circuit designs using reversible logic
    corecore