49,666 research outputs found

    Cellular Automata as a Model of Physical Systems

    Full text link
    Cellular Automata (CA), as they are presented in the literature, are abstract mathematical models of computation. In this pa- per we present an alternate approach: using the CA as a model or theory of physical systems and devices. While this approach abstracts away all details of the underlying physical system, it remains faithful to the fact that there is an underlying physical reality which it describes. This imposes certain restrictions on the types of computations a CA can physically carry out, and the resources it needs to do so. In this paper we explore these and other consequences of our reformalization.Comment: To appear in the Proceedings of AUTOMATA 200

    Bayesian model averaging over tree-based dependence structures for multivariate extremes

    Full text link
    Describing the complex dependence structure of extreme phenomena is particularly challenging. To tackle this issue we develop a novel statistical algorithm that describes extremal dependence taking advantage of the inherent hierarchical dependence structure of the max-stable nested logistic distribution and that identifies possible clusters of extreme variables using reversible jump Markov chain Monte Carlo techniques. Parsimonious representations are achieved when clusters of extreme variables are found to be completely independent. Moreover, we significantly decrease the computational complexity of full likelihood inference by deriving a recursive formula for the nested logistic model likelihood. The algorithm performance is verified through extensive simulation experiments which also compare different likelihood procedures. The new methodology is used to investigate the dependence relationships between extreme concentration of multiple pollutants in California and how these pollutants are related to extreme weather conditions. Overall, we show that our approach allows for the representation of complex extremal dependence structures and has valid applications in multivariate data analysis, such as air pollution monitoring, where it can guide policymaking

    Controlling Reversibility in Reversing Petri Nets with Application to Wireless Communications

    Full text link
    Petri nets are a formalism for modelling and reasoning about the behaviour of distributed systems. Recently, a reversible approach to Petri nets, Reversing Petri Nets (RPN), has been proposed, allowing transitions to be reversed spontaneously in or out of causal order. In this work we propose an approach for controlling the reversal of actions of an RPN, by associating transitions with conditions whose satisfaction/violation allows the execution of transitions in the forward/reversed direction, respectively. We illustrate the framework with a model of a novel, distributed algorithm for antenna selection in distributed antenna arrays.Comment: RC 201

    Strong interactions of single atoms and photons in cavity QED

    Get PDF
    An important development in modern physics is the emerging capability for investigations of dynamical processes for open quantum systems in a regime of strong coupling for which individual quanta play a decisive role. Of particular significance in this context is research in cavity quantum electrodynamics which explores quantum dynamical processes for individual atoms strongly coupled to the electromagnetic field of a resonator. An overview of the research activities in the Quantum Optics Group at Caltech is presented with an emphasis on strong coupling in cavity QED which enables exploration of a new regime of nonlinear optics with single atoms and photons

    A Survey of Cellular Automata: Types, Dynamics, Non-uniformity and Applications

    Full text link
    Cellular automata (CAs) are dynamical systems which exhibit complex global behavior from simple local interaction and computation. Since the inception of cellular automaton (CA) by von Neumann in 1950s, it has attracted the attention of several researchers over various backgrounds and fields for modelling different physical, natural as well as real-life phenomena. Classically, CAs are uniform. However, non-uniformity has also been introduced in update pattern, lattice structure, neighborhood dependency and local rule. In this survey, we tour to the various types of CAs introduced till date, the different characterization tools, the global behaviors of CAs, like universality, reversibility, dynamics etc. Special attention is given to non-uniformity in CAs and especially to non-uniform elementary CAs, which have been very useful in solving several real-life problems.Comment: 43 pages; Under review in Natural Computin

    Redox stress defines the small artery vasculopathy of hypertension: how do we bridge the bench-to-bedside gap?

    Get PDF
    Although convincing experimental evidence demonstrates the importance of vascular reactive oxygen and nitrogen species (RONS), oxidative stress, and perturbed redox signaling as causative processes in the vasculopathy of hypertension, this has not translated to the clinic. We discuss this bench-to-bedside disparity and the urgency to progress vascular redox pathobiology from experimental models to patients by studying disease-relevant human tissues. It is only through such approaches that the unambiguous role of vascular redox stress will be defined so that mechanism-based therapies in a personalized and precise manner can be developed to prevent, slow, or reverse progression of small-vessel disorders and consequent hypertension

    The synthesis of a symmetrically substituted α-octa(isopentoxy)anthralocyanine

    Get PDF
    α-Octa(isopentoxy)anthralocyanine has been synthesized and is found to have an unprecedented low-energy Q-band absorption and a low first oxidation potential
    corecore