49,666 research outputs found
Cellular Automata as a Model of Physical Systems
Cellular Automata (CA), as they are presented in the literature, are abstract
mathematical models of computation. In this pa- per we present an alternate
approach: using the CA as a model or theory of physical systems and devices.
While this approach abstracts away all details of the underlying physical
system, it remains faithful to the fact that there is an underlying physical
reality which it describes. This imposes certain restrictions on the types of
computations a CA can physically carry out, and the resources it needs to do
so. In this paper we explore these and other consequences of our
reformalization.Comment: To appear in the Proceedings of AUTOMATA 200
Bayesian model averaging over tree-based dependence structures for multivariate extremes
Describing the complex dependence structure of extreme phenomena is
particularly challenging. To tackle this issue we develop a novel statistical
algorithm that describes extremal dependence taking advantage of the inherent
hierarchical dependence structure of the max-stable nested logistic
distribution and that identifies possible clusters of extreme variables using
reversible jump Markov chain Monte Carlo techniques. Parsimonious
representations are achieved when clusters of extreme variables are found to be
completely independent. Moreover, we significantly decrease the computational
complexity of full likelihood inference by deriving a recursive formula for the
nested logistic model likelihood. The algorithm performance is verified through
extensive simulation experiments which also compare different likelihood
procedures. The new methodology is used to investigate the dependence
relationships between extreme concentration of multiple pollutants in
California and how these pollutants are related to extreme weather conditions.
Overall, we show that our approach allows for the representation of complex
extremal dependence structures and has valid applications in multivariate data
analysis, such as air pollution monitoring, where it can guide policymaking
Controlling Reversibility in Reversing Petri Nets with Application to Wireless Communications
Petri nets are a formalism for modelling and reasoning about the behaviour of
distributed systems. Recently, a reversible approach to Petri nets, Reversing
Petri Nets (RPN), has been proposed, allowing transitions to be reversed
spontaneously in or out of causal order. In this work we propose an approach
for controlling the reversal of actions of an RPN, by associating transitions
with conditions whose satisfaction/violation allows the execution of
transitions in the forward/reversed direction, respectively. We illustrate the
framework with a model of a novel, distributed algorithm for antenna selection
in distributed antenna arrays.Comment: RC 201
Strong interactions of single atoms and photons in cavity QED
An important development in modern physics is the emerging capability for investigations of dynamical processes for open quantum systems in a regime of strong coupling for which individual quanta play a decisive role. Of particular significance in this context is research in cavity quantum electrodynamics which explores quantum dynamical processes for individual atoms strongly coupled to the electromagnetic field of a resonator. An overview of the research activities in the Quantum Optics Group at Caltech is presented with an emphasis on strong coupling in cavity QED which enables exploration of a new regime of nonlinear optics with single atoms and photons
A Survey of Cellular Automata: Types, Dynamics, Non-uniformity and Applications
Cellular automata (CAs) are dynamical systems which exhibit complex global
behavior from simple local interaction and computation. Since the inception of
cellular automaton (CA) by von Neumann in 1950s, it has attracted the attention
of several researchers over various backgrounds and fields for modelling
different physical, natural as well as real-life phenomena. Classically, CAs
are uniform. However, non-uniformity has also been introduced in update
pattern, lattice structure, neighborhood dependency and local rule. In this
survey, we tour to the various types of CAs introduced till date, the different
characterization tools, the global behaviors of CAs, like universality,
reversibility, dynamics etc. Special attention is given to non-uniformity in
CAs and especially to non-uniform elementary CAs, which have been very useful
in solving several real-life problems.Comment: 43 pages; Under review in Natural Computin
Redox stress defines the small artery vasculopathy of hypertension: how do we bridge the bench-to-bedside gap?
Although convincing experimental evidence demonstrates the importance of vascular reactive oxygen and nitrogen species (RONS), oxidative stress, and perturbed redox signaling as causative processes in the vasculopathy of hypertension, this has not translated to the clinic. We discuss this bench-to-bedside disparity and the urgency to progress vascular redox pathobiology from experimental models to patients by studying disease-relevant human tissues. It is only through such approaches that the unambiguous role of vascular redox stress will be defined so that mechanism-based therapies in a personalized and precise manner can be developed to prevent, slow, or reverse progression of small-vessel disorders and consequent hypertension
The synthesis of a symmetrically substituted α-octa(isopentoxy)anthralocyanine
α-Octa(isopentoxy)anthralocyanine has been synthesized and is found to have an unprecedented low-energy Q-band absorption and a low first oxidation potential
- …
