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Abstract 
 

Although convincing experimental evidence demonstrates the importance of vascular reactive 

oxygen and nitrogen species (RONS), oxidative stress, and perturbed redox signaling as causative 

processes in the vasculopathy of hypertension, this has not translated to the clinic. We discuss this 

bench-to-bedside disparity and the urgency to progress vascular redox pathobiology from 

experimental models to patients by studying disease-relevant human tissues. It is only through such 

approaches that the unambiguous role of vascular redox stress will be defined so that mechanism-

based therapies in a personalized and precise manner can be developed to prevent, slow, or reverse 

progression of small-vessel disorders and consequent hypertension. 

  



Considering the high prevalence of hypertension worldwide, the excess heart disease and stroke 

that it predisposes to, and the fact that it is the strongest modifiable risk factor for cardiovascular 

disease, it is not surprising that the American Heart Association funded a Strategically Focused 

Research Network on hypertension and that the Lancet commissioned a call-to-action and a life-

course strategy to address the global burden of raised blood pressure (BP).1 Despite significant 

advances in understanding the pathophysiology of hypertension and the availability of numerous 

effective drugs, suboptimal BP control remains the primary predisposing factor for cardiovascular 

morbidity and mortality. This Hypertension Paradox of more uncontrolled hypertension despite 

improved therapies, defined by Chobanian,2 is multifactorial and may relate largely to the still 

unknown genetic basis and elusive causal molecular mechanisms of hypertension. 

Genetics plays some role in human primary hypertension as evidenced in twin studies and 

monogenetic forms of hypertension where the kidney is a key target. Genome-wide association 

studies have been disappointing and have failed to identify specific genes that underpin 

hypertension. Few loci have been validated or translated into therapeutic targets, with multiple 

genes and their variants collectively accounting for <2.5% of BP variation. In one of the largest recent 

studies to dissect the genetic architecture of BP, 66 BP-associated loci were identified.3 What is 

particularly significant in that study is that the 66 index single nucleotide polymorphisms were 

enriched with cis-regulatory elements, particularly in vascular cells, highlighting a potentially critical 

role for the vascular system, beyond the kidney, in BP regulation. In an unpublished study, we 

performed a comprehensive Gene Ontology analysis for the 87 genes reported as being the nearest 

to the 66 BP-associated single nucleotide polymorphisms3 searching for genes potentially involved in 

redox regulation. One of these, AGT, encodes angiotensinogen, the precursor of AngII (angiotensin 

II), a potent inducer of Nox and oxidative stress. Another gene PNPT1 encodes polyribonucleotide 

nucleotidyltransferase 1, important in cellular responses to oxidative stress. Other genes, for 

example, MTHFR that encodes methylenetetrahydrofolate reductase and SH2B3 that regulates cell 

differentiation, may influence cellular redox states indirectly. Recent studies indicate a high genetic 

risk of oxidative stress in patients with hypertension, evidenced by increased prevalence of single 

nucleotide polymorphisms of genes encoding enzymes related to oxidative stress (guanosine 

triphosphate cyclohydrolase-1 involved in BH4 [tetrahydrobiopterin] synthesis, mSOD [manganese 

superoxide dismutase], and eNOS [endothelial nitric oxide synthase]).4 Together genes regulating 

vascular function and oxidative stress seem to track with hypertension. However, causality has yet to 

be proven. 

The pathophysiology of vascular disorders in hypertension is well established. Although both large 

and small vessels play a role, small arteries are critically involved because they are key determinants 

of peripheral resistance, which defines BP. In support of this, experimental and human studies 

demonstrate that resistance arteries exhibit endothelial dysfunction, remodeling, and subclinical 

inflammation, processes often preceding emergence of hypertension, and which are reversible with 

BP lowering.5,6 As such, hypertension is increasingly being considered a disease of small blood 

vessels, where vascular injury causes increased BP, which promotes small artery vasculopathy and 

target organ damage. Microvascular complications are well-recognized consequences of established 

hypertension, events that are amplified and exacerbated with multimorbidity, such as diabetes 

mellitus, and which often lead to macrovascular disease, especially with aging. 

The fundamental question though is, is the vasculopathy a primary cause or a secondary 

consequence of elevated BP? Disentangling this relationship is complex, but what is clear is that 

primary events beget secondary events that beget tertiary events and hence the circuitous 

interaction between vascular dysfunction and elevated BP is an amplifying system, that becomes 



pathological when compensatory processes are decompensated. Interrupting this feedforward 

process would prevent or slow progression of small-vessel disorders and hence ameliorate 

development of hypertension and its complications, such as stroke and cardiac disease. 

The increasing recognition that small-vessel disorders are central to chronic pathologies including 

hypertension, together with the relative paucity of mechanistic insights into how small vessels cause 

these pathologies, prompted the National Institutes of Health to strategize Small blood vessels: Big 

health problems as a top scientific priority. To advance research in this area, a National Institutes of 

Health white paper emphasized the importance of a greater understanding of specific phenotypes of 

small vessels in pathophysiological conditions, including hypertension, with the goal of transforming 

diagnostic and therapeutic strategies to improve vascular health.7 

 

Vascular Phenotype in Hypertension 
 

Impaired vasorelaxation, vasoconstriction, eutrophic remodeling, reduced distensibility and 

rarefaction, processes associated with endothelial cell dysfunction, vascular smooth muscle cell 

hyper-reactivity, fibrosis, extracellular matrix remodeling, perivascular inflammatory cell activation, 

and immune cell responses characterize small arteries in hypertension and typify the vascular 

phenotype or vasculopathy of hypertension.5,6 These phenomena are dynamic, occurring at different 

phases during development of hypertension and are defined by complex interactions between 

vascular cells and circulating elements, including vasoactive agents (AngII, ET-1 [endothelin-1], 

aldosterone, and dopamine), growth factors (EGF [epidermal growth factor], IGF-1 [insulin growth 

factor 1], and PDGF [platelet-derived growth factor]), sex hormones, microRNAs, exosomes, and 

endothelial progenitor cells. Common to many of these processes is RONS generation and activation 

of redox signaling pathways.5,6,8–10 

 

Oxidative Stress Causes Hypertensive-Associated Vasculopathy: Experimental 

Evidence 
 

The vascular redox state is tightly controlled by activation of Nox-driven ROS (reactive oxygen 

species) generation, mitochondrial dysfunction, uncoupled eNOS, Nrf2-regulated, and antioxidant 

systems.8–10 Physiological redox signaling is characterized by tightly controlled production and 

degradation of RONS (superoxide anion [O2
−], hydrogen peroxide [H2O2], nitric oxide [NO], and 

peroxynitrite [ONOO−]) and reversible post-translational oxidoreductive modification of proteins 

that influence signaling through PLC-PKC (phospholipase 3-protein kinase C), c-Src, Rho kinase, ion 

channels, SHP1/2 (Src homology region 2 domain-containing phosphatase-1/2), MAP (mitogen-

activated protein) kinases, JAK/STAT (Janus kinase/signal transducer and activator of transcription 

kinase), and MMPs (matrix metalloproteinase)/TIMPs (tissue inhibitor of metalloproteinase).11 ROS 

are localized spatially and kinetically in subcellular compartments and microdomains and regulate 

vascular function. Perturbations in these systems and a shift to irreversible oxidative modifications 

cause cell injury and vascular dysfunction.6,9,10,12 Molecular, cellular, transgenic, and genetic models 

of experimental hypertension demonstrate unambiguously a causal role for oxidative stress (shift in 

the oxidative:reductive potential to an oxidized state because of increased ROS production and 

reduced antioxidant defences) in the pathophysiology of hypertensive vasculopathy.8–10Robust 



approaches to reduce Nox activity, normalize excess ROS, and reduce oxidative stress reverse 

vascular remodeling, ameliorate endothelial dysfunction, and improve reactivity, processes 

associated with BP lowering.5,6,8–10 This redox stress phenomenon is apparent in almost every model 

of experimental hypertension studied, and accordingly the presumption has been that it should also 

hold true in human hypertension. However, this is not the case. 

 

Oxidative Stress and Small Artery Disease in Human Hypertension: Still to Be 

Confirmed 
 

Despite the populist belief and ongoing hype in the lay-press and scientific journals about the 

injurious effects of free radicals and the health value of antioxidants, major clinical trials failed to 

demonstrate expected cardiovascular benefit, and there is still no direct proof that vascular Nox 

activity is altered or that intravascular RONS generation is actually increased in patients with 

hypertension or cardiovascular disease. In fact, to date, no disease has convincingly been 

successfully treated by antioxidants. Besides the discussion and ongoing debate related to 

appropriateness of choice and dosing of antioxidants used in cardiovascular clinical trials, there are 

many potential reasons why the redox stress theory in human hypertension has not yet been 

proven. Among these is the paucity of sensitive and specific methods in the clinical setting to 

accurately quantify RONS concentrations, to evaluate oxidative/reductive stress, and to measure 

oxidative modification of proteins.7 There is a relative lack of understanding of fundamental 

mechanisms that regulate Nox activity and RONS generation in the human cardiovascular system 

with challenges in studying human tissue in a disease-specific manner. More specifically, at the 

molecular level (1) Nox isoforms are localized in various organelles (plasmalemma, nucleus, 

endoplasmic reticulum, and mitochondria) in a vascular cell-specific manner (endothelial cells, 

vascular smooth muscle cells, fibroblasts, adipocytes, and macrophages), (2) RONS that are short-

lived and unstable are compartmentalized in specific subcellular microdomains (caveolae/lipid rafts, 

endosomes), (3) proteins are differentially oxidized through numerous post-translational processes 

(carbonylation, s-sulfenylation, s-nitrosylation, s-glutathionylation, and disulphide formation), (4) 

oxidative modification is both reversible and irreversible, and (5) redox-sensitive signaling occurs 

alongside, as well as intertwined with, other signaling pathways that regulate vascular function. 

Development of innovative approaches to quantify intracellular RONS in a compartment-targeted 

manner, elaboration of oxidative proteomics to identify redox modifications, and innovation of in 

silico tools to model redox signaling and oxidative changes in humans will advance the 

understanding of human redox biology.12However, unless we study clinically appropriate human 

tissue, the bench-to-bedside gap in defining the role of redox stress in the small artery vasculopathy 

of human hypertension will widen. Furthermore, without tissue that is germane to human disease, 

moving forward in the era of precision medicine will be hampered. 

 



 

 

New Frontiers in Vascular Redox Biology of Human Hypertension: Accessing 

Inaccessible Hypertension-Relevant Tissue 
 

Advancing the field of redox biology in cardiovascular medicine and identifying druggable vascular 

targets demand new approaches where disease-relevant tissue from deeply phenotyped individuals 

is studied. Although cancer research has benefitted by relatively easy access to tumors, which has 

facilitated progress in pharmacogenomics, functional genomics/proteomics, and precision medicine 

in oncology, this is more challenging in cardiovascular medicine where access to patient cardiac and 

vascular tissue is limited. Recognizing this, there has been much effort in identifying surrogate 

readouts or biomarkers of vascular disorders in body fluids. Although this approach may have some 

value, it is almost certain that disease-applicable tissues hold more clinically useful 

molecular/cellular information than what could be obtained from biomarkers. Relevant to vascular 

molecular phenotyping, redox biology, and pharmacogenomics in hypertension, we think that it is 

timely and necessary to focus directly on vascular tissue and hypertension-relevant cells from 

humans, especially because experimental models do not fully recapitulate clinical hypertension. In 

our view, several approaches, using tissue from clinically characterized patients with hypertension, 

could be used, including (1) the gluteal biopsy technique to isolate small arteries and vascular cells 

from subcutaneous tissue,11 (2) the endovascular guidewire technique to isolate endothelial 

cells,13 (3) genomic profiling of human vascular cells,14 and (4) hypertensive patient–derived induced 

pluripotent stem cells.15 These procedures that may seem onerous from the perspective of clinical 

application have enormous potential to unravel molecular and redox mechanisms of hypertensive 

vasculopathy and are clinically attractive as strategies for testing the functional 

genomic/proteomic/-omic approach to precision medicine of cardiovascular diseases. 

Coupling of these approaches with new tools to accurately measure RONS will help decode the 

significance of free radical biology in vascular cells and will provide scientific mechanistic insights 

into how redox stress and oxidative damage cause endothelial dysfunction and vascular injury in 

clinical hypertension. It is only through such advancements that pseudoscientific health claims of 

antioxidants can be truly addressed and that the bench-to-bedside gap in the oxidative stress theory 

of human hypertension can be closed. 
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