13 research outputs found

    Privacy-preserving information hiding and its applications

    Get PDF
    The phenomenal advances in cloud computing technology have raised concerns about data privacy. Aided by the modern cryptographic techniques such as homomorphic encryption, it has become possible to carry out computations in the encrypted domain and process data without compromising information privacy. In this thesis, we study various classes of privacy-preserving information hiding schemes and their real-world applications for cyber security, cloud computing, Internet of things, etc. Data breach is recognised as one of the most dreadful cyber security threats in which private data is copied, transmitted, viewed, stolen or used by unauthorised parties. Although encryption can obfuscate private information against unauthorised viewing, it may not stop data from illegitimate exportation. Privacy-preserving Information hiding can serve as a potential solution to this issue in such a manner that a permission code is embedded into the encrypted data and can be detected when transmissions occur. Digital watermarking is a technique that has been used for a wide range of intriguing applications such as data authentication and ownership identification. However, some of the algorithms are proprietary intellectual properties and thus the availability to the general public is rather limited. A possible solution is to outsource the task of watermarking to an authorised cloud service provider, that has legitimate right to execute the algorithms as well as high computational capacity. Privacypreserving Information hiding is well suited to this scenario since it is operated in the encrypted domain and hence prevents private data from being collected by the cloud. Internet of things is a promising technology to healthcare industry. A common framework consists of wearable equipments for monitoring the health status of an individual, a local gateway device for aggregating the data, and a cloud server for storing and analysing the data. However, there are risks that an adversary may attempt to eavesdrop the wireless communication, attack the gateway device or even access to the cloud server. Hence, it is desirable to produce and encrypt the data simultaneously and incorporate secret sharing schemes to realise access control. Privacy-preserving secret sharing is a novel research for fulfilling this function. In summary, this thesis presents novel schemes and algorithms, including: • two privacy-preserving reversible information hiding schemes based upon symmetric cryptography using arithmetic of quadratic residues and lexicographic permutations, respectively. • two privacy-preserving reversible information hiding schemes based upon asymmetric cryptography using multiplicative and additive privacy homomorphisms, respectively. • four predictive models for assisting the removal of distortions inflicted by information hiding based respectively upon projection theorem, image gradient, total variation denoising, and Bayesian inference. • three privacy-preserving secret sharing algorithms with different levels of generality

    Framework for reversible data hiding using cost-effective encoding system for video steganography

    Get PDF
    Importances of reversible data hiding practices are always higher in contrast to any conventional data hiding schemes owing to its capability to generate distortion free cover media. Review of existing approaches on reversible data hiding approaches shows variable scheme mainly focussing on the embedding mechanism; however, such schemes could be furthermore improved using encoding scheme for optimal embedding performance. Therefore, the proposed manuscript discusses about a cost-effective scheme where a novel encoding scheme has been used with larger block sizes which reduces the dependencies over larger number of blocks. Further a gradient-based image registration technique is applied to ensure higher quality of the reconstructed signal over the decoding end. The study outcome shows that proposed data hiding technique is proven better than existing data hiding scheme with good balance between security and restored signal quality upon extraction of data

    Privacy-aware reversible watermarking in cloud computing environments

    Get PDF
    As an interdisciplinary research between watermarking and cryptography, privacy-aware reversible watermarking permits a party to entrust the task of embedding watermarks to a cloud service provider without compromising information privacy. The early development of schemes were primarily based upon traditional symmetric-key cryptosystems, which involve an extra implementation cost of key exchange. Although recent research attentions were drawn to schemes compatible with asymmetric-key cryptosystems, there were notable limitations in the practical aspects. In particular, the host signal must either be enciphered in a redundant way or be pre-processed prior to encryption, which would largely limit the storage efficiency and scheme universality. To relax the restrictions, we propose a novel research paradigm and devise different schemes compatible with different homomorphic cryptosystems. In the proposed schemes, the encoding function is recognised as an operation of adding noise, whereas the decoding function is perceived as a corresponding denoising process. Both online and offline contentadaptive predictors are developed to assist watermark decoding for various operational requirements. A three-way trade-off between the capacity, fidelity and reversibility is analysed mathematically and empirically. It is shown that the proposed schemes achieve the state-the-art performance

    Reversible Data Hiding in Encrypted Images Using MSBs Integration and Histogram Modification

    Full text link
    This paper presents a reversible data hiding in encrypted image that employs based notions of the RDH in plain-image schemes including histogram modification and prediction-error computation. In the proposed method, original image may be encrypted by desire encryption algorithm. Most significant bit (MSB) of encrypted pixels are integrated to vacate room for embedding data bits. Integrated ones will be more resistant against failure of reconstruction if they are modified for embedding data bits. At the recipient, we employ chess-board predictor for lossless reconstruction of the original image by the aim of prediction-error analysis. Comparing to existent RDHEI algorithms, not only we propose a separable method to extract data bits, but also content-owner may attain a perfect reconstruction of the original image without having data hider key. Experimental results confirm that the proposed algorithm outperforms state of the art ones

    Applications of Locality and Asymmetry to Quantum Fault-Tolerance

    Full text link
    Quantum computing sounds like something out of a science-fiction novel. If we can exert control over unimaginably small systems, then we can harness their quantum mechanical behavior as a computational resource. This resource allows for astounding computational feats, and a new perspective on information-theory as a whole. But there's a caveat. The events we have to control are so fast and so small that they can hardly be said to have occurred at all. For a long time after Feynman's proposal and even still, there are some who believe that the barriers to controlling such events are fundamental. While we have yet to find anything insurmountable, the road is so pockmarked with challenges both experimental and theoretical that it is often difficult to see the road at all. Only a marriage of both engineering and theory in concert can hope to find the way forward. Quantum error-correction, and more broadly quantum fault-tolerance, is an unfinished answer to this question. It concerns the scaling of these microscopic systems into macroscopic regimes which we can fully control, straddling practical and theoretical considerations in its design. We will explore and prove several results on the theory of quantum fault-tolerance, but which are guided by the ultimate goal of realizing a physical quantum computer. In this thesis, we demonstrate applications of locality and asymmetry to quantum fault-tolerance. We introduce novel code families which we use to probe the behavior of thresholds in quantum subsystem codes. We also demonstrate codes in this family that are well-suited to efficiently correct asymmetric noise models, and determine their parameters. Next we show that quantum error-correcting encodings are incommensurate with transversal implementations of universal classical-reversible computation. Along the way, we resolve an open question concerning almost information-theoretically secure quantum fully homomorphic encryption, showing that it is impossible. Finally, we augment a framework for transversally mapping between stabilizer subspace codes, and discuss prospects for fault-tolerance.PHDMathematicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145948/1/mgnewman_1.pd

    Information security and assurance : Proceedings international conference, ISA 2012, Shanghai China, April 2012

    Full text link
    corecore