3,978 research outputs found

    Glider: A GPU Library Driver for Improved System Security

    Full text link
    Legacy device drivers implement both device resource management and isolation. This results in a large code base with a wide high-level interface making the driver vulnerable to security attacks. This is particularly problematic for increasingly popular accelerators like GPUs that have large, complex drivers. We solve this problem with library drivers, a new driver architecture. A library driver implements resource management as an untrusted library in the application process address space, and implements isolation as a kernel module that is smaller and has a narrower lower-level interface (i.e., closer to hardware) than a legacy driver. We articulate a set of device and platform hardware properties that are required to retrofit a legacy driver into a library driver. To demonstrate the feasibility and superiority of library drivers, we present Glider, a library driver implementation for two GPUs of popular brands, Radeon and Intel. Glider reduces the TCB size and attack surface by about 35% and 84% respectively for a Radeon HD 6450 GPU and by about 38% and 90% respectively for an Intel Ivy Bridge GPU. Moreover, it incurs no performance cost. Indeed, Glider outperforms a legacy driver for applications requiring intensive interactions with the device driver, such as applications using the OpenGL immediate mode API

    Lockdown: Dynamic Control-Flow Integrity

    Full text link
    Applications written in low-level languages without type or memory safety are especially prone to memory corruption. Attackers gain code execution capabilities through such applications despite all currently deployed defenses by exploiting memory corruption vulnerabilities. Control-Flow Integrity (CFI) is a promising defense mechanism that restricts open control-flow transfers to a static set of well-known locations. We present Lockdown, an approach to dynamic CFI that protects legacy, binary-only executables and libraries. Lockdown adaptively learns the control-flow graph of a running process using information from a trusted dynamic loader. The sandbox component of Lockdown restricts interactions between different shared objects to imported and exported functions by enforcing fine-grained CFI checks. Our prototype implementation shows that dynamic CFI results in low performance overhead.Comment: ETH Technical Repor

    Securing Real-Time Internet-of-Things

    Full text link
    Modern embedded and cyber-physical systems are ubiquitous. A large number of critical cyber-physical systems have real-time requirements (e.g., avionics, automobiles, power grids, manufacturing systems, industrial control systems, etc.). Recent developments and new functionality requires real-time embedded devices to be connected to the Internet. This gives rise to the real-time Internet-of-things (RT-IoT) that promises a better user experience through stronger connectivity and efficient use of next-generation embedded devices. However RT- IoT are also increasingly becoming targets for cyber-attacks which is exacerbated by this increased connectivity. This paper gives an introduction to RT-IoT systems, an outlook of current approaches and possible research challenges towards secure RT- IoT frameworks

    Practical Fine-grained Privilege Separation in Multithreaded Applications

    Full text link
    An inherent security limitation with the classic multithreaded programming model is that all the threads share the same address space and, therefore, are implicitly assumed to be mutually trusted. This assumption, however, does not take into consideration of many modern multithreaded applications that involve multiple principals which do not fully trust each other. It remains challenging to retrofit the classic multithreaded programming model so that the security and privilege separation in multi-principal applications can be resolved. This paper proposes ARBITER, a run-time system and a set of security primitives, aimed at fine-grained and data-centric privilege separation in multithreaded applications. While enforcing effective isolation among principals, ARBITER still allows flexible sharing and communication between threads so that the multithreaded programming paradigm can be preserved. To realize controlled sharing in a fine-grained manner, we created a novel abstraction named ARBITER Secure Memory Segment (ASMS) and corresponding OS support. Programmers express security policies by labeling data and principals via ARBITER's API following a unified model. We ported a widely-used, in-memory database application (memcached) to ARBITER system, changing only around 100 LOC. Experiments indicate that only an average runtime overhead of 5.6% is induced to this security enhanced version of application

    TrustShadow: Secure Execution of Unmodified Applications with ARM TrustZone

    Full text link
    The rapid evolution of Internet-of-Things (IoT) technologies has led to an emerging need to make it smarter. A variety of applications now run simultaneously on an ARM-based processor. For example, devices on the edge of the Internet are provided with higher horsepower to be entrusted with storing, processing and analyzing data collected from IoT devices. This significantly improves efficiency and reduces the amount of data that needs to be transported to the cloud for data processing, analysis and storage. However, commodity OSes are prone to compromise. Once they are exploited, attackers can access the data on these devices. Since the data stored and processed on the devices can be sensitive, left untackled, this is particularly disconcerting. In this paper, we propose a new system, TrustShadow that shields legacy applications from untrusted OSes. TrustShadow takes advantage of ARM TrustZone technology and partitions resources into the secure and normal worlds. In the secure world, TrustShadow constructs a trusted execution environment for security-critical applications. This trusted environment is maintained by a lightweight runtime system that coordinates the communication between applications and the ordinary OS running in the normal world. The runtime system does not provide system services itself. Rather, it forwards requests for system services to the ordinary OS, and verifies the correctness of the responses. To demonstrate the efficiency of this design, we prototyped TrustShadow on a real chip board with ARM TrustZone support, and evaluated its performance using both microbenchmarks and real-world applications. We showed TrustShadow introduces only negligible overhead to real-world applications.Comment: MobiSys 201

    YASIR: A Low-Latency, High-Integrity Security Retrofit for Legacy SCADA Systems (Extended Version)

    Get PDF
    We construct a bump-in-the-wire (BITW) solution that retrofits security into time-critical communications over bandwidth-limited serial links between devices in legacy Supervisory Control And Data Acquisition (SCADA) systems, on which the proper operations of critical infrastructures such as the electric power grid rely. Previous BITW solutions do not provide the necessary security within timing constraints; the previous solution that does is not BITW. At a hardware cost comparable to existing solutions, our BITW solution provides sufficient security, and yet incurs minimal end-to-end communication latency

    YASIR: A Low-Latency, High-Integrity Security Retrofit for Legacy SCADA Systems

    Get PDF
    We construct a bump-in-the-wire (BITW) solution that retrofits security into time-critical communications over bandwidth-limited serial links between devices in Supervisory Control And Data Acquisition (SCADA) systems. Previous BITW solutions fail to provide the necessary security within timing constraints; the previous solution that does provide the necessary security is not BITW. At a comparable hardware cost, our BITW solution provides sufficient security, and yet incurs minimal end-to-end communication latency. A microcontroller prototype of our solution is under development

    Side-channel based intrusion detection for industrial control systems

    Full text link
    Industrial Control Systems are under increased scrutiny. Their security is historically sub-par, and although measures are being taken by the manufacturers to remedy this, the large installed base of legacy systems cannot easily be updated with state-of-the-art security measures. We propose a system that uses electromagnetic side-channel measurements to detect behavioural changes of the software running on industrial control systems. To demonstrate the feasibility of this method, we show it is possible to profile and distinguish between even small changes in programs on Siemens S7-317 PLCs, using methods from cryptographic side-channel analysis.Comment: 12 pages, 7 figures. For associated code, see https://polvanaubel.com/research/em-ics/code

    How do programs become more concurrent? A story of program transformations

    Get PDF
    For several decades, programmers have relied onMooreâ s Law to improve the performance of their softwareapplications. From now on, programmers need to programthe multi-cores if they want to deliver efficient code. Inthe multi-core era, a major maintenance task will be tomake sequential programs more concurrent. What are themost common transformations to retrofit concurrency intosequential programs?We studied the source code of 5 open-source Javaprojects. We analyzed qualitatively and quantitatively thechange patterns that developers have used in order toretrofit concurrency. We found that these transformationsbelong to four categories: transformations that improve thelatency, the throughput, the scalability, or correctness of theapplications. In addition, we report on our experience ofparallelizing one of our own programs. Our findings caneducate software developers on how to parallelize sequentialprograms, and can provide hints for tool vendors aboutwhat transformations are worth automating
    corecore