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Abstract

For several decades, programmers have relied on
Moore’s Law to improve the performance of their software
applications. From now on, programmers need to program
the multi-cores if they want to deliver efficient code. In
the multi-core era, a major maintenance task will be to
make sequential programs more concurrent. What are the
most common transformations to retrofit concurrency into
sequential programs?

We studied the source code of 5 open-source Java
projects. We analyzed qualitatively and quantitatively the
change patterns that developers have used in order to
retrofit concurrency. We found that these transformations
belong to four categories: transformations that improve the
latency, the throughput, the scalability, or correctness of the
applications. In addition, we report on our experience of
parallelizing one of our own programs. Our findings can
educate software developers on how to parallelize sequen-
tial programs, and can provide hints for tool vendors about
what transformations are worth automating.

1 Introduction

For several decades, the computing hardware industry
has kept up with Moore’s Law, doubling the speed of desk-
top computers every 18 months. Other than for a few niche
domains (e.g., embedded computing), in general program-
mers have relied on Moore’s Law to improve the perfor-
mance of software applications. However, because uni-
processors don’t scale, the industry shifted to multi-core
computers. This demands that programmers find and ex-
ploit parallelism in their applications, if they want to reap
the same performance benefits as in the past.

Parallel programming and concurrency have been used
for decades, but they were the mark of a small elite of
programmers. From now on, parallel programming will

be a skill that professional programmers will have to ac-
quire. The dominant paradigm for parallel programming in
desktop computing is shared-memory, thread-based paral-
lelism. This paradigm adds extra complexity due to non-
determinism and increased potential for deadlocks and data
races.

Dealing with concurrency is easier if concurrency is de-
signed into the system from the beginning, rather than being
retrofitted later on [10, 13]. However, most of the current
desktop applications were not designed with concurrency
in mind. In the multi-core era, a major maintenance task
will be to retrofit concurrency into existing applications so
that applications can utilize the additional cores. Although
the topic of concurrency has been widely documented, little
is known about the most common program transformations
for retrofitting concurrency.

In this study, we create a taxonomy of the most common
program transformations used to retrofit concurrency. We
analyze qualitatively and quantitatively the concurrency-
related program transformations in 5 open-source projects.
Additionally, we report on our own experience with trans-
forming one of our projects to make use of parallelism. Our
goals are: (i) to inform software developers about the trend
of program transformation they are going to perform dur-
ing the transition to multi-core era, and (ii) to provide tool
developers with empirical data about what program trans-
formations are worth to (semi)-automate in the future.

To build the taxonomy, we manually analyzed sev-
eral versions of 5 open-source Java projects: two core
Eclipse [5] plugins, JUnit [12], Apache Tomcat server [19]
and Apache MINA library [16]. Some of these projects
are large, so we guided our analysis by reading the release
notes, searching in the source code for the concurrency fin-
gerprints (e.g., references tosynchronized or Thread),
and comparing the source code of different versions of pro-
gram elements that contain the concurrency fingerprints.

We found out that these parallelizing transformations fall
into four categories: transformations that improve thela-
tency(i.e., an application feels more responsive), transfor-
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mations that improve thethroughput (i.e., more compu-
tational tasks executed per unit of time), transformations
that improve thescalability(i.e., the performance scales up
when adding more cores), and transformations that improve
correctness (i.e., fix concurrency-related bugs so that appli-
cation behaves according to specification).

In summary, this paper makes the following contribu-
tions:

• presents an important problem: what are the program
transformations that software maintainers will perform
when transitioning to the multi-core era?

• presents the results of an empirical study about the
common program transformations for retrofitting con-
currency into real programs, and one experiment with
parallelizing our own code.

• presents some practical applications for the reported
findings: it educates software developers on how to
port existing applications to use the multi-cores, and
it provides hints for tool builders on which transfor-
mations are worth automating.

2 Experimental Setup

2.1 Case Studies

This section describes briefly each case study project,
the versions that we analyzed, and the main concurrency-
related themes in those versions. We track two major ver-
sions for which we know that there are concurrency-related
changes. After the version with the major concurrency-
related changes, we track changes in one more version to
find whether the previously introduced concurrency con-
structs changed due to bug fixes.

We selected case studies that cover the whole spectrum
of concurrency. Two case studies (Search and DOM) are
infantswith respect to concurrency: they were freshly con-
verted from sequential to parallel programs. Two case stud-
ies (Tomcat and MINA) areveteranswith respect to concur-
rency: they were parallelized a long time ago, or they were
designed with concurrency in mind. One case study (JUnit)
is somewhere in the middle.

2.1.1 Eclipse Search plugin

org.eclipse.search is a core plugin in the Eclipse IDE.
It handles Java-specific searches as well as general file
search queries. We studied version 2.1.3 (March 2004), 3.0
(June 2004), and 3.3.2 (the current stable release). A ma-
jor theme in Eclipse 3.0 is improving the responsiveness of
the IDE so that the UI feels more alive. Eclipse accom-
plished this goal by allowing long-running operations, such
as search, to run in background threads.

2.1.2 Eclipse Java DOM

org.eclipse.jdt.core.dom is a subcomponent of the
core Java tooling in Eclipse. It contains a parser and the
Abstract Syntax Tree (AST) nodes, as well as several utility
classes. The AST DOM nodes are used by all Java plug-
ins that display or manipulate Java source code. We studied
versions 2.1.3, 3.0, and 3.3.2. According to the responsive-
ness theme, the AST DOM nodes are concurrently accessed
from several tools (e.g., the method override indicator or the
semantic coloring in the editor).

2.1.3 JUnit

JUnit is a framework for executing test cases. It is the Java
implementation of the xUnit family of testing frameworks.
We studied versions 1.0, 3.8.2, and 4.0. JUnit 3.8.2’s UI
improved its responsiveness; in addition tests can be run in
separate threads improving the throughput.

2.1.4 Apache MINA library

Apache MINA is a network application framework which
helps users develop high performance and high scalability
network applications easily. It provides an abstract, event-
driven, asynchronous API over various transports such as
TCP/IP and UDP/IP via Java NIO. We studied versions 1.0
(October 2006) and version 1.1 (April 2007). Version 1.1
contains scalability improvements.

2.1.5 Apache Tomcat Server

Apache Tomcat is a web container, or application server,
enabling Java code to run in cooperation with a web server.
Tomcat is the official Reference Implementation for the Java
Servlet and the JavaServer Pages (JSP) specifications from
Sun Microsystems. We studied versions 4.1.1, 5.5, and 6.0.
These versions fixed several concurrency-related bugs and
improved the scalability.

Table 1 presents some general statistics about the case-
study programs.

2.2 Set up of the experiment

The projects that we analyzed ranged from a few thou-
sand lines of code to several million lines of code (e.g.,
Eclipse is roughly 2-million LOC). A thorough manual
analysis ofall source code in such large projects is not fea-
sible. Below we describe the process that we used to guide
our analysis for each project.

• We read the version-release documents for each
project. These release documents are produced by the
developers of the projects and usually describe the
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Eclipse Search Eclipse DOM JUnit Tomcat MINA

2.1.3 3.0 3.3.2 2.1.3 3.0 3.3.2 1.0 3.8.2 4.0 4.1 5.5 6.0 1.0 1.1

Lines of Code [KLOC] 11 21 24 27 52 62 3 8 10 402 489 338 40 40

# Synchronized Blocks 4 34 42 12 110 121 15 20 18 921 1152 1108 422 211

# Statement/Whole Method 2/2 23/11 28/14 3/9 97/13 99/122 0/15 2/18 1/17 415/506 457/695 413/604 172/250 90/121

# “this”/custom Lock 2/0 3/20 11/17 0/3 82/15 82/17 0/0 2/0 1/0 51/364 73/384 75/338 13/159 6/84

Table 1. Statistics of the case-study programs for each vers ion we analyzed: LOC, total number of
synchronized blocks, how many synchronized block at the sta tement level vs. whole method level,
how many statement synchronized blocks use “this” lock vs. c ustom lock.

major architectural or design changes in each version.
For Eclipse we used its help system, sectionEclipse
3.0 Plugin Migration Guide, specifically
the documents “Incompatibilities between Eclipse 2.1
and 3.0” and “Adopting 3.0 mechanisms and API”.
For Tomcat we usedhttp://tomcat.apache.
org/tomcat-5.5-doc/changelog.html and
for MINA we used http://issues.apache.
org/jira/browse/DIRMINA.

• We loaded different versions of the project under anal-
ysis in the Eclipse IDE. We used Eclipse’s search en-
gine and looked for thefingerprintsof concurrent code.
In Java, these includesynchronized blocks, refer-
ences tojava.lang.Thread, references to classes
in java.util.concurrent, and references to util-
ity classes that run tasks in the UI event thread
(e.g.,javax.swing.SwingUtilities in the Swing
toolkit or org.eclipse.swt.widgets.Display in
the SWT toolkit).

• For those methods and classes that we found (either
through release-notes or code search) containing con-
currency artifacts, we manually analyzed how they
changed between different versions. We recorded the
kinds of changes (qualitative) and the number of dis-
tinct such changes (quantitative).

3 Concurrency Program Transformations

Subsection 3.1 presents the four objectives for making
concurrency-related program transformations: improving
latency, throughput, scalability, and correctness. Our hy-
pothesis is that any particular concurrency-related transfor-
mation strives to achieve at least one of these four objec-
tives. The same transformation can achieve more than one
of the four objectives.

Subsection 3.2 lists all types of concurrency-related
transformations that we found in the five case-studies. We
illustrate each transformation with a real example. We

present each transformation under the objective it achieves
in the case study where it comes from.

In subsection 3.3 we give a more general categorization,
by describing how each transformation can achieve more
than one objective.

Subsection 3.4 concludes by addressing the threats to va-
lidity.

3.1 Objectives for Concurrency Transfor-
mations

We hypothesize that there are four objectives for making
concurrency-related transformations.

Improve Latency. Latency measures how long it takes
from the moment of asking for the result of a computation
until the result is available. To improve user satisfaction,
the UI should feel responsive, even when executing long-
running computations. For example, in Eclipse, searching
for all references to a program element is a long-running
operation, especially if the project contains millions of lines
of code. Because the search runs in a background thread, a
user can still browse through the source code, or inspect the
partial search results, before all computation finishes.

Improve Throughput. Throughput measures the amount
of results that are computed per unit of time. To improve
throughput, programmers decompose the computation so
that multiple units of execution can process the data in par-
allel.

Improve Scalability. It is desired that an application’s
performance scales up when adding more computational
units (e.g., more processors). Amdahl’s Law quantifies the
maximum speed up of a parallelized program. The upper-
bound for the speed up is inverse proportional with the
percentage of computation that needs to execute sequen-
tially. In concurrent programs, synchronization constructs
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increase the sequential part of the computation. Program-
mers fine-tune the fraction of sequential code in order to
improve scalability.

Correctness. An application should behave according to
its specification even when it is accessed concurrently from
multiple threads. In an object-oriented sequential program,
the class invariants need to hold only before method-entry
and after method-exit. However, in a concurrent program,
the same invariants need be preserved at all points where a
context switch can occur, even in the middle of a method.
To enforce these invariants, operations that manipulate the
internal state need to be executedatomically. Second,
changes to an object’s state need to bevisible to other
threads. In shared-memory, thread-based systems, synchro-
nization blocks are used to achieve both atomicity and visi-
bility.

3.2 Examples of Concurrency-related
Transformations

3.2.1 Improving the Responsiveness

Create Threads In JUnit, concurrency is used to improve
the responsiveness of the UI. JUnit 3.8.2 has three modes
of displaying the results: a textual output on the console,
one Swing UI and one AWT UI. If the tests ran in the UI
thread, the UI would block until all tests finished executing.
To prevent blocking the UI while tests run,TestRunner
creates and spawns a new thread in which all tests run.

Method Object with Runnable The computation in a
method is encapsulated in an object whose API offers arun

method. Depending on the value of a parameter passed to
run, the method executes in the main thread, or in a back-
ground thread. The following code snapshot illustrates this
idiom in Eclipse Search:

run(runInSeparateThread, new ReplaceOperation() {
protected void doReplace(IProgressMonitor pm){

replace(pm, replaceText);
}

});

Thread-safe Lazy Initialization Lazy initialization of
fields needs to be thread-safe, i.e., prevent multiple threads
from initializing the same field. Below is an example from
Eclipse’s DOM AST. Notice that the lock is acquired only
if the field is not initialized:

public SimpleName getName() {
if (this.typeName == null) {
// lazy init must be thread-safe
synchronized (this) {

if (this.typeName == null) {
preLazyInit();

this.typeName = new SimpleName(this.ast);
postLazyInit(this.typeName, internalNameProperty());

}
}

}
return this.typeName;

}

Delegating thread safety to the Event Dispatching
Thread. As an alternative to using synchronized blocks
to ensure thread safety, graphical applications can delegate
thread safety by confining the UI update operations to a sin-
gle thread. Graphical toolkits like Swing or SWT use a
dedicatedevent dispatching threadfor handling GUI events
(e.g., mouse click, pressed button). Applications can del-
egate thread-safety by enforcing that all updates happen in
the event thread.

For example, JUnit updates the progress indica-
tor bar inside a runnable, scheduled for asychronous
execution in the event dispatching thread. The class
javax.swing.SwingUtilities provides a method
invokeLater for non-blocking,asynchronousexecution
of a runnable – a runnable’srun method is executed after
all pending events have been processed.SwingUtilities

also provides a method,invokeAndWait, for synchronous
execution of a runnable – the invoking code blocks until
all pending events have been processedand the runnable’s
run method was executed:

public void testEnded(String stringName) {
...

SwingUtilities.invokeLater(
new Runnable() {
public void run() {

if (fTestResult != null) {
fCounterPanel.setRunValue(fTestResult.runCount());
fProgressIndicator.step(fTestResult.runCount(),

fTestResult.wasSuccessful());
}

}
}

);
}

Eclipse’s SWT toolkit uses a similar util-
ity class, Display, which provides the methods
asyncExec(Runnable) and syncExec(Runnable)

for scheduling the runnable in the SWT event thread.
Eclipse’s Search plugin uses both methods.

3.2.2 Improving the Throughput

Introduce Loop Parallelism Loop-parallelism [15], is an
idiom used to parallelize iterations of a computationaly in-
tensive loop. The loop computation is split among several
threads, with each thread executing the same operations on
a subset of the whole data. At the end of the computation,
the partial results are assembled to form the final result.
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In JUnit,TestSuite represents a collection of tests. Its
run method iterates over all the tests in a test suite, and
callsrunTest, which runs a particular test and reports the
results in theTestResult:

class TestSuite
public void run(TestResult result) {

for (Enumeration e= tests(); e.hasMoreElements(); ) {
if (result.shouldStop() )

break;
Test test= (Test)e.nextElement();
runTest(test, result);

}
}

Notice that there are no loop-carried dependencies over
individual iterations. Therefore, this loop can be split into
iterations that execute in parallel.ActiveTestSuite re-
fines the behavior ofTestSuite by overriding the “hook”
methodrunTest. The refined implementation ofrunTest
spawns a new thread in which it runs a test:

class ActiveTestSuite
public void runTest(final Test test, final TestResult result) {

Thread t= new Thread() {
public void run() {
try {

test.run(result);
} finally {

ActiveTestSuite.this.runFinished();
}

}};
t.start();

}

Task parallelism Task parallelism [15] is used when the
computation can be decomposed into a collection of tasks
that can execute concurrently. The tasks can execute either
the same code or different code. Task parallelism is often
employed in servers that receive requests and process them
in separate threads.

3.2.3 Improving the Scalability

Reducing the duration of the held lock Rather than
holding a lock for the duration of a long-running operation
that does not need be synchronized, a lock can be released
and re-acquired later. This enables other waiting threads to
grab the lock and continue execution. Below we show an
example from Eclipse’s Search plugin. Notice that the lock
is released during the long-running operation that opens and
renders the window dialog:

public boolean okToClose() {
. . .

synchronized (this) {
fWindowClosingDialog= createClosingDialog();

}
fWindowClosingDialog.open(); //long-running
synchronized (this) {

fWindowClosingDialog= null;
}

. . .
}

Copy-then-Iterate Holding a lock while iterating over a
collection and executing a long-running operation prevents
other threads from executing. Instead of holding a lock dur-
ing the whole iteration, one could hold a lock just to copy
the collection, then release the lock while iterating over
the copied collection. We illustrate this idiom in Eclipse’s
Search plugin:

void fireStarting(ISearchQuery query) {
Set copiedListeners= new HashSet();
synchronized (fListeners) {
copiedListeners.addAll(fListeners);

}
Iterator listeners= copiedListeners.iterator();
while (listeners.hasNext()) {
IQueryListener l= (IQueryListener) listeners.next();
l.queryStarting(query);

}
}

Notice that this idiom prevents interference among con-
current threads, since the copied collection is a local, stack-
confined object. This “snapshot” style iterator uses a ref-
erence to the state of the collection at the point when the
iterator was created. However, the copied collection will
not reflect additions, removals, or changes to the original
collection since the iterator was created.

Using Concurrent Collections The new
java.util.concurrent APIs in the Java standard
libraries provide scalable alternatives to previous collection
data structures. For example,ConcurrentHashMap is an
efficient Hashtable implementation that allows several
readers to execute concurrently (without blocking). It
allows a number of writers to execute concurrently (without
blocking) by splitting the range of hash values into different
hash buckets.

Using Atomic Classes java.util.concurrent.atomic

APIs support lock-free thread-safe programming on sin-
gle variables. For example,AtomicInteger wraps an
integer value and provides APIs likegetAndIncrement
or compareAndSet that execute two operations atomi-
cally. The atomic classes are implemented using efficient
compare-and-swaphardware instructions.

We found several examples of conversions from old col-
lections to concurrent collections and from primitive types
to atomics in both MINA and Tomcat.
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3.2.4 Correctness

Concurrency is gradually refined in consecutive versions of
real-world programs. For example, in servers like Tomcat
which were designed from the beginning to be concurrent,
we noticed additions of synchronization blocks. We could
correlate some of them with bug reports and patches say-
ing that the change was triggered by either insufficient or
inexistent previous synchronization.

Add Synchronized Block This idiom add synchroniza-
tion protection to a previously unprotected field access.

Coarsen synchronized block If a previously synchro-
nized block did not cover all the shared fields involved in
an class invariant, developers expanded the synchronization
block over to cover the shared fields.

Change lock type Rather than using “this”, the default
lock for synchronized blocks, fields that are aliasing objects
passed as method arguments need to be protected by the
same lock that protects the method argument. In the ex-
ample below, the lock type was changed from “this” to the
collection that the block protects:

public void addListener(ISearchResultListener l) {
synchronized (fListeners) {
fListeners.add(l);

}
}

3.3 Summary of findings

we summarize our findings in Tables 2, 3, and 4. These
tables aredescriptive: they describe transformations that
happened in real code.

Table 2 summarizes the kinds of transformations and
how many times they appear in the case studies. For each
case-study we report only the changes (deltas) made in the
later version. That is, we do not report the concurrency id-
ioms that were already present in the previous version. The
changes that we report in Table 2 include only edits to meth-
ods and classes that are present in both versions.

Adding synchronized blocksis a transformation that
cross-cuts most other transformations, since syhchroniza-
tion blocks are the primary construct from which the other
transformations are made of. Therefore, we make a distinc-
tion between adding synchronized blocks as a side effect of
a transformation vs. adding synchronization blocks because
the previously parallelized code was unsufficiently synchro-
nized. In Tables 2, 3, and 4 we report only the latter; these
changes are corelated with bugs reports.

Table 3 presents concurrency idioms only in the methods
and classes that were added in the later version.

JUnit Tomcat
1.0→ 3.8.2 4.1→ 5.5

Delegating to Event Dispatch 9
Use Atomic Classes 27
Creating new Threads 3
Use ThreadLocal 2
Introduce Loop Parallelism 1

Table 3. Parallelizing idioms for program ele-
ments that are addedin the later version.

Latency Throughput Scalability Correctness

Method Object with Runnable 4
Remove synchronized block 1
Reducing Lock Duration 2
Copy-then-iterate 7
Delegating to Event Dispatch 16
Thread-safe Lazy Initialization 78
Creating new Threads 2 1
Loop Parallelism 1
UseConcurrent Collections 33
Use Atomic Classes 42
Add synchronized block 18
Coarsen synchronized block 6
Use ThreadLocal fields 2
Change Lock Type 3

Table 4. Correlation of transformations with
objectives in the 5 case studies. The data
shows how many times each transformation
was employed for a particular objective.

Table 4 links these transformations with objectives for
making concurrency-related transformations. For each
transformation we report how many times it was employed
to achieve an objective in the 5 case-studies.

We make several observations from this study. First, the
same kind of transformation can be used to achieve different
performance objectives (latency, throughput, scalability).
Second, there is a trade-off between correctness and im-
proving performance. The transformations that achieve cor-
rectness involve adding new synchronized blocks or coars-
ening existing ones, which in turn increases the fraction of
code that executes sequentially. Third, retrofitting concur-
rency is a process. In applications that are just beein paral-
lelized (e.g., Eclipse Search and DOM), the objective is to
improve latency. In applications that have been parallelized
for several versions (e.g., Tomcat and MINA), the objective
is to fix concurrency errors and improve scalability.

3.4 Threats to Validity

Internal Validity One could ask whether our retrospec-
tive analysis and classification of the prallelizing transfor-
mations reflects the real intent of the developers of these
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Search Search DOM JUnit Tomcat Tomcat MINA
2.1.3→ 3.0 3.0→ 3.3.2 2.1.3→ 3.0 1.0→ 3.8.2 4.1→ 5.5 5.5→ 6.0 1.0→ 1.1

Delegating to Event Dispatch 7
Method Object with Runnable 4
Introduce Loop Parallelism
Introduce Task Parallelism
Change Lock Type 3
Reducing Lock Duration 2
Copy-then-iterate 5 2
Thread-safe Lazy Initialization 78
UseConcurrent Collections 1 32
Use Atomic Classes 10 5
Creating new Threads
Remove Synchronized Block 1
Coarsen Synchronized block 6
Add Synchronized block 3 15

Table 2. Parallelizing transformations ( edits) for program elements that exist in both versions.

projects. For three projects (Eclipse Search, Eclipse DOM,
and JUnit) we confirmed with the developers that indeed our
classification reflects their intent. For Tomcat, we were able
to trace many of the concurrency changes to bug reports.

External Validity We only looked at 5 projects, and they
were all developed in Java. Maybe other projects would
not display the same program transformations. First, the
projects that we looked at were developed by different
teams, with contributors from a large open-source commu-
nity. Therefore, there is a diversity of transformations in
each project. Second, although in this study we only looked
at Java programs, the transformations themselves (exclud-
ing the ones that involvejava.util.concurrent) are
not language-specific. We expect a similar range of trans-
formations for other languages that use shared-memory,
thread-based parallelism. Third, our classification is not
complete: studying more projects would reveal new kinds
of transformations. However, these transformations would
fall under one of the four major categories: improving re-
sponsiveness, throughput, or scalability, or fixing concur-
rency bugs.

Reliability A detailed analysis of transformations at the
class and method level is available online at [2], along with
the source code for the versions we analyzed. This allows
an interested reader to replicate our results.

4 Experience with converting one application

4.1 Concurrency Transformations

To learn more about the transformations a software de-
veloper performs when parallelizing existing code, we par-
allelized one of our own projects, RefactoringCrawler [4].
RefactoringCrawler is a tool for inferring refactorings that

happened between two versions of a library. Refactor-
ingCrawler currently detects seven types of refactorings,in-
cluding renamings, changes of method signatures, moved
methods, etc.

We first ran the Eclipse’s profiler to find the parts of the
code that are most computationally intensive. The profiler
identified the methodfindSimilarMethods() as one of
the hot spots. This method iterates over all pairs of source
methods from the two versions of the input library and finds
which methods have a textual resemblance (see Fig. 1(a)).
Depending on the size of the library under analysis, there
can be tens of thousands of pairs that need to be analyzed.
Since there are no dependencies between the iterations of
the loop, we parallelized this loop using theLoop Paral-
lelismtransformation.

Fig. 1(b) shows how we parallelized the code. Spawning
a thread for each loop iteration is not effective: thread cre-
ation and destruction dominates the computation for each it-
eration. Moreover, running thousands of threads on a desk-
top computer with a small number of processors decreases
the performance due to the cost of context-switching be-
tween threads. Instead, we allocate a number of threads
equal to the number of available processors, so that each
processor runs only one single thread.

Next, for each thread, we allocate a quota of the data to
be analyzed. This quota is equal to the size of the data to be
analyzed divided by the number of available processors.

We encapsulate the computation inside aFutureTask,
which is one of the utility concurrency APIs provided
by the newjava.util.concurrent Java standard li-
brary. FutureTask describes a result-bearing compu-
tation [13]. The computation is implemented within a
Callable, the result-bearing equivalent ofRunnnable.
MethodfindQuotaMethods() does the main work: it it-
erates over a subset of the methods in the two versions of
a library and determines whether they are textually similar.
This method assembles the partial result inside a temporary
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collection,result.
Once it launches threads for allFutureTasks, the code

waits for all partial computations to finish. The method
FutureTask.get() blocks until the task finishes. From
the partial results, the code assembles the final result.

The second transformation we made involvedtask-
parallelism. RefactoringCrawler detects different kinds of
refactorings in a sequential order, first detecting renamed
methods, then methods whose signatures changed, etc. (see
Fig. 2(a)). We changed RefactoringCrawler so that dif-
ferent detections run concurrently in different threads (see
Fig. 2(b)).

To ensure that all threads finish execution before display-
ing the results, we useCountDownLatch, a synchronizer
utility class from the newjava.util.concurrent pack-
age. The latch is initialized with the number of threads that
will run the tasks; the termination of each task decrements
the counter. Callingwait on the latch forces the execution
to wait until all tasks are finished.

In addition, these concurrently-running threads read and
write some common data-structures (not shown in the fig-
ure). Therefore, we made the code that accesses these data
structures thread-safe. Namely, we used synchronization
blocks to guard the read and write accesses to the shared
data-structures. We used fine-level granularity locks and
hold the locks only in the critical sections. In total we used
11 synchronization blocks.

4.2 Performance improvements

To measure the performance effects of these transfor-
mations, we used RefactoringCrawler to detect refactorings
in JHotDraw [11], a 20KLOC open-source framework for
building graphical editors. RefactoringCrawler found 24
refactorings in JHotDraw.

As a metric for performance improvement we use the
SpeedUp of the parallelized code over the sequential code.
We computeSpeedUp as the fraction of the total time taken
to detect refactorings with the original, sequential tool,and
the total time to detect refactorings with the parallelized
tool. We ran RefactoringCrawler on a Linux desktop PC
with 4 cores. The parallelized RefactoringCrawler correctly
detects the same refactorings as the sequential tool, while
achieving of 2.41x speedup when running on 4 cores.

4.3 Lessons learned

• When parallelizing code,first make it right, then make
it fast. Safety always comes first, before improving the
performance. In an eager attempt to improve the per-
formance, we first missed some of the thread-safety
properties. This was in part due to some hidden ac-
cesses to the shared data. The whole conversion of

code took the first author 3 days. However, most of the
time was spent tracing and fixing some data races.

• The java.util.concurrent APIs in the new
java libraries improved our productivity. This
package contains convenient abstractions for syn-
chronization among different threads (e.g., barriers,
latches, future tasks) and thread-safe collections (e.g.,
ConcurrentHashMap).

• One challenge is to improve scalability without penal-
izing cases when the code runs on one single proces-
sor. Without careful examination, it is easy to degrade
the performance of the parallelized code on a single
processor. For example, using the thread-safeVector

or the thread-safeCollections.synchronizedXYZ
wrapper around a thread-unsafe collection can degrade
the application’s performance on a single processor.

5 Related Work

Mattson et al. [15] present a comprehensive catalog of
patterns for parallel programming. Their catalog accomo-
dates patterns and idioms for a large class of parallel pro-
gramming architectures, including high-performance com-
puters. Lea [13] and Goets et al. [10] wrote similar catalogs
for concurrency patterns in Java. In contrast, our goal is not
to document all patterns for writing concurrent programs,
but we are interested in finding what are some of the pat-
terns that are most commonly used in practice. Our focus is
on the transformation process to convert a sequential Java
program to concurrency, whereas patterns are often the end
target of such transformations.

Some of the transformations that we identified have been
long known to the high-performance computing (HPC)
community. For example,Loop Parallelismis one of the
traditional approaches in HPC, where the majority of algo-
rithms are expressed in terms of iterative constructs. The
OpenMP API was created primarily to support paralleliza-
tion of loop-driven problems. OpenMP supports parallel
loop execution andreductionoperations that combine the
partial results (e.g., summing the partial results).

Most empirical studies on concurrency have focused on
finding the patterns for concurrency bugs. Chandra and
Chen [1] collect 12 concurrency bugs from three applica-
tions. Farchi et al. [8] analyzed the concurrency-related
bugs in code written by students. Lu et al [14] conducted
an extensive study of 105 real-world concurrency bugs from
4 open-source large projects. However, as far as we know,
ours is the first empirical study to characterize concurrency-
related transformations in real code.

There is a plethora of tools for automatically detecting
concurrency-related bugs. We mention Atomizer [9] for de-
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tecting atomicity violations and Eraser [18] for detecting
dataraces in lock-based multithreaded programs.

Everaars et al. [6] report on their experience with con-
verting a Fortran 77 sequential application into a concurrent
application. They have usedcoarse-graintransformations
to plug sequential modules into a new multi-threaded exe-
cutable. The heart of their approach is finding and express-
ing the sequential modules, as well as the communication
patterns between these modules and the framework. They
use a language, MANIFOLD, to express the coordination
and communication protocol.

Converting sequential programs to concurrency is much
in the spirit of other efforts in the past for retrofitting
architectural qualities: retrofitting type-safety in unsafe
legacy code [17], converting legacy C code into C++ [7,
20], retrofitting security in unsecure legacy systems [3].
Although one can argue that such architectural qualities
should be designed in the system, often they need to be
retrofitted later on.

6 Conclusions

With the advent of the multi-core era, concurrency will
have to be retrofitted into existing sequential applications.
In this study we look at some of the most common ways to
retrofit concurrency into 5 widely used open-source appli-
cations. Our findings confirm our hypothesis: programmers
transform existing programs in order to improve latency,
throughput, or scalability, or to fix concurrency errors. Our
own experience with parallelizing one application taught us
that safety and correctness comes before improving the per-
formance.

We found out that retrofitting concurrency is not a one-
time event, but it is a continuous process. First, the incep-
tive for retrofitting concurrency is to increase the respon-
siveness, then the throughput of an application. As the
application matures and makes more use of concurrency,
the predominant changes fall into fixing concurrency er-
rors, fine-tuning, and improving the scalability. Given the
importance and the length of such transformations, tool de-
velopers should consider (semi)automation for each stage in
the concurrency lifecycle in order to improve programmer’s
productivity.
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Figure 1. Loop Parallelism transformation in RefactoringC rawler: (a) depicts the sequential program,
(b) depicts the parallelized program.

Figure 2. Task parallelism in RefactoringCrawler. Figure d epicts code (a) before and (b) after the
transformation.
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