9,429 research outputs found

    The State-of-the-arts in Focused Search

    Get PDF
    The continuous influx of various text data on the Web requires search engines to improve their retrieval abilities for more specific information. The need for relevant results to a userā€™s topic of interest has gone beyond search for domain or type specific documents to more focused result (e.g. document fragments or answers to a query). The introduction of XML provides a format standard for data representation, storage, and exchange. It helps focused search to be carried out at different granularities of a structured document with XML markups. This report aims at reviewing the state-of-the-arts in focused search, particularly techniques for topic-specific document retrieval, passage retrieval, XML retrieval, and entity ranking. It is concluded with highlight of open problems

    Answering Ambiguous Questions with a Database of Questions, Answers, and Revisions

    Full text link
    Many open-domain questions are under-specified and thus have multiple possible answers, each of which is correct under a different interpretation of the question. Answering such ambiguous questions is challenging, as it requires retrieving and then reasoning about diverse information from multiple passages. We present a new state-of-the-art for answering ambiguous questions that exploits a database of unambiguous questions generated from Wikipedia. On the challenging ASQA benchmark, which requires generating long-form answers that summarize the multiple answers to an ambiguous question, our method improves performance by 15% (relative improvement) on recall measures and 10% on measures which evaluate disambiguating questions from predicted outputs. Retrieving from the database of generated questions also gives large improvements in diverse passage retrieval (by matching user questions q to passages p indirectly, via questions q' generated from p)

    Answering Complex Questions by Joining Multi-Document Evidence with Quasi Knowledge Graphs

    No full text
    Direct answering of questions that involve multiple entities and relations is a challenge for text-based QA. This problem is most pronounced when answers can be found only by joining evidence from multiple documents. Curated knowledge graphs (KGs) may yield good answers, but are limited by their inherent incompleteness and potential staleness. This paper presents QUEST, a method that can answer complex questions directly from textual sources on-the-fly, by computing similarity joins over partial results from different documents. Our method is completely unsupervised, avoiding training-data bottlenecks and being able to cope with rapidly evolving ad hoc topics and formulation style in user questions. QUEST builds a noisy quasi KG with node and edge weights, consisting of dynamically retrieved entity names and relational phrases. It augments this graph with types and semantic alignments, and computes the best answers by an algorithm for Group Steiner Trees. We evaluate QUEST on benchmarks of complex questions, and show that it substantially outperforms state-of-the-art baselines
    • ā€¦
    corecore