340 research outputs found

    AN APPROACH TO ESTIMATE GLOBAL BIOMASS BURNING EMISSIONS OF ORGANIC AND BLACK CARBON FROM MODIS FIRE RADIATIVE POWER

    Get PDF
    Biomass burning is an important global phenomenon affecting atmospheric composition with significant implications for climatic forcing. Wildland fire is the main global source of fine primary carbonaceous aerosols in the form of organic carbon (OC) and black carbon (BC), but uncertainty in aerosol emission estimates from biomass burning is still rather large. Application of satellite based measures of fire radiative power (FRP) has been demonstrated to offer an alternative approach to estimate biomass consumed with the potential to estimate the associated emissions from fires. To date, though, no study has derived integrated FRP (referred to as fire radiative energy or FRE) at a global scale, in part due to limitations in temporal or spatial resolution of satellite sensors. The main objective of this research was to quantify global biomass burning emissions of organic and black carbon aerosols and the corresponding effect on planetary radiative forcing. The approach is based on the geophysical relationship between the flux of FRE emitted, biomass consumed, and aerosol emissions. Aqua and Terra MODIS observations were used to estimate FRE using a simple model to parameterize the fire diurnal cycle based on the long term ratio between Terra and Aqua MODIS FRP and cases of diurnal satellite measurements of FRP made by the geostationary sensor SEVIRI, precessing sensor VIRS, and high latitude (and thus high overpass frequency) observations by MODIS. Investigation of the atmospheric attenuation of MODIS channels using a parametric model based on the MODTRAN radiative transfer model indicates a small bias in FRE estimates which was accounted for. Accuracy assessment shows that the FRE estimates are precise (R2 = 0.85), but may be underestimated. Global estimates of FRE show that Africa and South America dominate biomass burning, accounting for nearly 70% of the annual FRE generated. The relationship between FRE and OCBC estimates made with a new MODIS-derived inversion product of daily integrated biomass burning aerosol emissions was explored. The slope of the relationship within each of several biomes yielded a FRE-based emission factor. The biome specific emission factors and FRE monthly data were used to estimate OCBC emissions from fires on a global basis for 2001 to 2007. The annual average was 17.23 Tg which was comparable to previously published values, but slightly lower. The result in terms of global radiative forcing suggests a cooling effect at both the top-of-atmosphere (TOA) and surface approaching almost -0.5 K which implies that biomass burning aerosols could dampen the warming effect of green house gas emissions. An error budget was developed to explore the sources and total uncertainty in the OCBC estimation. The results yielded an uncertainty value of 58% with specific components of the process warranting future consideration and improvement. The uncertainty estimate does not demonstrate a significant improvement over current methods to estimate biomass burning aerosols, but given the simplicity of the approach should allow for refinements to be made with relative ease

    The sensitivity of land emissivity estimates from AMSR-E at C and X bands to surface properties

    Get PDF
    Microwave observations at low frequencies exhibit more sensitivity to surface and subsurface properties with little interference from the atmosphere. The objective of this study is to develop a global land emissivity product using passive microwave observations from the Advanced Microwave Scanning Radiometer – Earth Observing System (AMSR-E) and to investigate its sensitivity to land surface properties. The developed product complements existing land emissivity products from SSM/I and AMSU by adding land emissivity estimates at two lower frequencies, 6.9 and 10.65 GHz (C- and X-band, respectively). Observations at these low frequencies penetrate deeper into the soil layer. Ancillary data used in the analysis, such as surface skin temperature and cloud mask, are obtained from International Satellite Cloud Climatology Project (ISCCP). Atmospheric properties are obtained from the TIROS Operational Vertical Sounder (TOVS) observations to determine the small upwelling and downwelling atmospheric emissions as well as the atmospheric transmission. A sensitivity test confirms the small effect of the atmosphere but shows that skin temperature accuracy can significantly affect emissivity estimates. Retrieved emissivities at C- and X-bands and their polarization differences exhibit similar patterns of variation with changes in land cover type, soil moisture, and vegetation density as seen at SSM/I-like frequencies (Ka and Ku bands). The emissivity maps from AMSR-E at these higher frequencies agree reasonably well with the existing SSM/I-based product. The inherent discrepancy introduced by the difference between SSM/I and AMSR-E frequencies, incidence angles, and calibration has been assessed. Significantly greater standard deviation of estimated emissivities compared to SSM/I land emissivity product was found over desert regions. Large differences between emissivity estimates from ascending and descending overpasses were found at lower frequencies due to the inconsistency between thermal IR skin temperatures and passive microwave brightness temperatures which can originate from below the surface. The mismatch between day and night AMSR-E emissivities is greater than ascending and descending differences of SSM/I emissivity. This is because of unique orbit time of AMSR-E (01:30 a.m./p.m. LT) while other microwave sensors have orbit time of 06:00 to 09:00 (a.m./p.m.). This highlights the importance of considering the penetration depth of the microwave signal and diurnal variability of the temperature in emissivity retrieval. The effect of these factors is greater for AMSR-E observations than SSM/I observations, as AMSR-E observations exhibit a greater difference between day and night measures. This issue must be addressed in future studies to improve the accuracy of the emissivity estimates especially at AMSR-E lower frequencies

    Evaluation of MODIS Land products for air temperature estimations in Colombia

    Get PDF
    El producto moderate resolution imaging spectroradiometer (MODIS) land-surface temperature/emissivity (LST ) es a menudo utilizado en estudios meteorológicos para evaluaciones en tiempo cuasireal. Colombia requiere de un manejo prospectivo de sus ecosistemas productivos, sin embargo no existe una alta densidad de mediciones para la temperatura de la superficie (temperatura del aire a 2 m). La validación clásica de los productos MODIS incluye trabajo de campo para la calibración y la medición de las diferencias entre los radiómetros y el sensor MODIS. Para esta investigación, los datos del producto LST de MODIS son comparados con estaciones climatológicas usando técnicas de regresión múltiple para aumentar la exactitud de MODIS LST en conjunto con los productos MOD09GA , MOD17A2, MOD15A2 y MOD13A2 como parámetros auxiliares (variables explicativas) dentro del modelo final. Las mediciones terrestres se realizaron en la zona Caribe, Casanare y Valle del Cauca, usando las estaciones agroclimatológicas en la primera temporada seca de 2007 y los datos MODIS en versión diaria. El índice de vegetación aumentado, la porción de radiación activa fotosintética y la fotosíntesis neta son incluidas en el modelo final como estimadores del parámetro clave para la temperatura del aire: la vegetación. Finalmente dos factores son propuestos para la estimación de la temperatura de la superficie-LST : ángulo cenit del sensor y ángulo cenit del sol, que registran los cambios en la reflectancia de la vegetación y la sensibilidad del sensor.The moderate resolution imaging spectroradiometer (MODIS) land-surface temperature/emissivity (LST) product is often used for studies in meteorology due to its ability for near realtime evaluations. Colombia, as a country requires a prospective management for its productive ecosystems, but currently does not have sufficient spatially-distributed field data for air temperature at 2-m above the ground. The traditional validation of MODIS products includes field campaigns for calibrating and measuring differences between the satellite sensor and radiometers. For this research, the LST data on the ground was compared with climatologic stations using multiple regression techniques for improving the accuracy of the LST from MODIS, using MOD09GA, MOD17A2, MOD15A2, MOD13A2 as ancillary parameters (explanatory variables) in the final model. The ground measurements were obtained in the Caribbean zone and the Casanare and Valle del Cauca departments in Colombia, using agroclimatic stations in the first dry season of 2007 and daily MODIS data. Enhanced vegetation index, fraction of photosynthetically active radiation, and net photosynthesis were included in the final model for explaining the vegetation as a key parameter for air temperature. Finally, two factors were proposed for LST estimation: sensor zenith angle and solar zenith angle due to the reflectance of the vegetation and sensitivity of the sensor.Fil: Castro Diaz, Ivan Ricardo. Universidad de Buenos Aires. Facultad de Filosofía y Letras. Instituto de Geografia "Romualdo Ardissone"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    A novel satellite mission concept for upper air water vapour, aerosol and cloud observations using integrated path differential absorption LiDAR limb sounding

    Get PDF
    We propose a new satellite mission to deliver high quality measurements of upper air water vapour. The concept centres around a LiDAR in limb sounding by occultation geometry, designed to operate as a very long path system for differential absorption measurements. We present a preliminary performance analysis with a system sized to send 75 mJ pulses at 25 Hz at four wavelengths close to 935 nm, to up to 5 microsatellites in a counter-rotating orbit, carrying retroreflectors characterized by a reflected beam divergence of roughly twice the emitted laser beam divergence of 15 µrad. This provides water vapour profiles with a vertical sampling of 110 m; preliminary calculations suggest that the system could detect concentrations of less than 5 ppm. A secondary payload of a fairly conventional medium resolution multispectral radiometer allows wide-swath cloud and aerosol imaging. The total weight and power of the system are estimated at 3 tons and 2,700 W respectively. This novel concept presents significant challenges, including the performance of the lasers in space, the tracking between the main spacecraft and the retroreflectors, the refractive effects of turbulence, and the design of the telescopes to achieve a high signal-to-noise ratio for the high precision measurements. The mission concept was conceived at the Alpbach Summer School 2010

    Using middle-infrared reflectance for burned area detection

    Get PDF
    Tese de doutoramento, Ciências Geofísicas e da Geoinformação (Meteorologia), Universidade de Lisboa, Faculdade de Ciências, 2011A strategy is presented that allows deriving a new index for burned area discrimination over the Amazon and Cerrado regions of Brazil. The index is based on information from the near-infrared (NIR) and middle-infrared (MIR) channels of the Moderate Resolution Imaging Spectroradiometer (MODIS). A thorough review is undertaken of existing methods for retrieving MIR reflectance and an assessment is performed, using simulated and real data, about the added value obtained when using the radiative transfer equation (RTE) instead of the simplified algorithm (KR94) developed by Kaufman and Remer (1994), the most used in the context of burned area studies. It is shown that use of KR94 in tropical environments to retrieve vegetation reflectance may lead to errors that are at least of the same order of magnitude of the reflectance to be retrieved and considerably higher for large values of land surface temperature (LST) and solar zenith angle (SZA). Use of the RTE approach leads to better estimates in virtually all cases, with the exception of high values of LST and SZA, where results from KR94 are also not usable. A transformation is finally defined on the MIR/NIR reflectance space aiming to enhance the spectral information such that vegetated and burned surfaces may be effectively discriminated. The transformation is based on the difference between MIR and NIR in conjunction with the distance from a convergence point in the MIR/NIR space, representative of a totally burnt surface. The transformation allows defining a system of coordinates, one coordinate having a small scatter for pixels associated to vegetation, burned surfaces and soils containing organic matter and the other coordinate covering a wide range of values, from green and dry/stressed vegetation to burned surfaces. The new set of coordinates opens interesting perspectives to applications like drought monitoring and burned area discrimination using remote-sensed information.O coberto vegetal da superfície da Terra tem vindo a sofrer mudanças, por vezes drásticas, que conduzem a alterações tanto na rugosidade da superfície terrestre como no seu albedo, afectando directamente as trocas de calor sensível e latente e de dióxido de carbono entre a superfície terrestre e a atmosfera (Sellers et al., 1996). Neste contexto, as queimadas assumem um papel de extremo relevo (Nobre et al., 1991; O’Brien, 1996; Xue, 1996) na medida em que constituem uma das mais importantes fontes de alteração do coberto vegetal, resultando na destruição de florestas e de recursos naturais, libertando carbono da superfície continental para a atmosfera (Sellers et al., 1995) e perturbando as interacções biosfera-atmosfera (Levine et al., 1995; Scholes, 1995) através de mudanças na rugosidade do solo, na área foliar e noutros parâmetros biofísicos associados ao coberto vegetal. Ora, neste particular, a Amazónia Brasileira constitui um exemplo notável de mudanças no uso da terra e do coberto vegetal nas últimas décadas, como resultado da desflorestação induzida pelo homem bem como por causas naturais (Gedney e Valdes, 2000; Houghton, 2000; Houghton et al., 2000; Lucas et al., 2000), estimando-se que as regiões tropicais sejam responsáveis por cerca de 32% da emissão global de carbono para a atmosfera (Andreae, 1991). Neste contexto, a disponibilidade de informações pormenorizadas e actualizadas sobre as distribuições espacial e temporal de queimadas e de áreas ardidas em regiões tropicais afigura-se crucial, não só para uma melhor gestão dos recursos naturais, mas também para estudos da química da atmosfera e de mudanças climáticas (Zhan et al., 2002). A detecção remota constitui, neste âmbito, uma ferramenta indispensável na medida em que permite uma monitorização em tempo quase real, a qual se revela especialmente útil em áreas extensas e/ou de difícil acesso afectadas pelo fogo (Pereira et al., 1997). Diversos instrumentos, tais como o Land Remote Sensing Satellite/Thematic Mapper (LANDSAT/TM) e o National Oceanic and Atmospheric Administration/Advanced Very High Resolution Radiometer (NOAA/AVHRR) têm vindo a ser extensivamente utilizados na gestão dos fogos florestais, em particular aos níveis da detecção de focos de incêndio e da monitorização de áreas queimadas. Mais recentemente, o instrumento VEGETATION a bordo do Satellite Pour l'Observation de la Terre (SPOT) tem vindo a ser utilizado com sucesso na monitorização de fogos. Finalmente, são de referir os sensores da série Along Track Scanning Radiometer (ATSR) para os quais têm vindo a ser desenvolvidos algoritmos de identificação de focos de incêndio, e ainda o sensor Moderate Resolution Imaging Spectroradiometer (MODIS) que tem vindo a demonstrar capacidades óptimas no que respeita à observação global de fogos, plumas e áreas queimadas. Neste contexto, os métodos actuais de detecção de áreas ardidas através da detecção remota têm vindo a dar prioridade à utilização das regiões do vermelho (0.64 μm) e infravermelho-próximo (0.84 μm) do espectro eletromagnético. No entanto, tanto a região do vermelho quanto a do infravermelho-próximo apresentam a desvantagem de serem sensíveis à presença de aerossóis na atmosfera (Fraser e Kaufman, 1985; Holben et. al., 1986). Desta forma, em regiões tropicais como a Amazónia, onde existem grandes camadas de fumo devido à queima de biomassa, a utlização destas duas regiões do espectro eletromagnético torna-se insatisfatória para a detecção de áreas ardidas. Por outro lado, a região do infravermelho médio (3.7 – 3.9 μm) tem a vantagem de não ser sensível à presença da maior parte dos aerossóis, exceptuando a poeira (Kaufman e Remer, 1994) mostrando-se, ao mesmo tempo, sensível a mudanças na vegetação devido à absorção de água líquida. Com efeito, estudos acerca dos efeitos do vapor de água na atenuação do espectro eletromagnético demonstraram que a região do infravermelho médio é uma das únicas regiões com relativamente pouca atenuação (Kerber e Schut, 1986). Acresce que a região do infravermelho médio apresenta uma baixa variação da irradiância solar (Lean, 1991), tendo-se ainda que a influência das incertezas da emissividade na estimativa da temperatura da superfície é pequena quando comparada com outras regiões térmicas tais como as de 10.5 e 11.5 μm (Salysbury e D’Aria, 1994). A utilização da radiância medida através de satélites na região do infravermelho médio é, no entanto, dificultada pelo facto de esta ser afectada tanto pelo fluxo térmico quanto pelo fluxo solar, contendo, desta forma, duas componentes, uma emitida e outra reflectida, tendo-se que a componente reflectiva contém os fluxos térmico e solar reflectidos pela atmosfera e pela superfície enquanto que as emissões térmicas são oriundas da atmosfera e da superfície. Ora, a componente solar reflectida é de especial interesse para a detecção de áreas ardidas pelo que se torna necessário isolá-la do sinal total medido pelo sensor. Devido à ambiguidade deste sinal, a distinção dos efeitos da reflectância e da temperatura torna-se uma tarefa muito complexa, verificando-se que os métodos em que se não assume nenhuma simplificação, levando-se, portanto, em consideração todos os constituintes do sinal do infravermelho médio se tornam complexos e difíceis de serem aplicados na prática, na medida em que requerem dados auxiliares (e.g. perfis atmosféricos) e ferramentas computacionais (e.g. modelos de tranferência radiativa). Kaufman e Remer (1994) desenvolveram um método simples para estimar a reflectância do infravermelho médio o qual assenta em diversas hipóteses simplificadoras. Apesar do objectivo primário que levou ao desenvolvimento do método ser a identificação de áreas cobertas por vegetação densa e escura em regiões temperadas, este método tem sido lagarmente utilizado nos estudos acerca da discriminação de áreas queimadas, algumas das vezes em regiões tropicais (Roy et al., 1999; Barbosa et al., 1999; Pereira, 1999). Na literatura não existe, no entanto, nenhum estudo acerca da exactidão e precisão deste método quando aplicado com o objectivo de detectar áreas ardidas, em especial em regiões tropicais. Neste sentido, no presente trabalho procedeu-se a um estudo de viabilidade do método proposto por Kaufman e Remer (1994) em simultâneo com a análise da equação de tranferência radiativa na região do infravermelho médio, tendo sido realizados testes de sensibilidade dos algoritmos em relação aos erros nos perfis atmosféricos, ruído do sensor e erros nas estimativas da temperatura da superfície. Para tal recorreu-se ao modelo de transferência radiativa Moderate Spectral Resolution Atmospheric Transmittance and Radiance Code (MODTRAN), dando-se especial atenção ao caso do sensor MODIS. Os resultados demonstraram que a utilização do método proposto por Kaufman e Remer (1994) em regiões tropicais para a estimativa da reflectância no infravermelho médio, leva a erros que são pelo menos da mesma ordem de magnitude do parâmetro estimado e, em alguns casos, muito maior, quando ocorre a combinação de altas temperaturas da superfície terrestre com baixos ângulos zenitais solares. A utilização da equação de transferência radiativa mostrouse uma boa alternativa, desde que estejam disponíveis dados acerca da temperatura da superfíce terrestre assim como dos perfis atmosféricos. Entretanto, nas regiões onde ocorrem altos valores de temperatura da superfície terrestre e baixos ângulos zenitais solares, quaisquer dos dois métodos se mostra pouco utilizável, já que nesta região a estimativa da reflectância constitui um problema mal-posto. Em paralelo, utilizaram-se informações sobre aerossóis de queimada para efectuar simulações do MODTRAN que permitiram avaliar a reposta do canal do infravermelho-médio à este tipo de perturbação do sinal, muito comum na Amazónia Brasileira. A fim de tornar o estudo o mais realístico possível, procedeu-se à coleta de material resultante de queimadas na região Amazónica, mais especificamente em Alta Floresta, Mato Grosso, Brasil. Estes resultado foram então integrados nos estudos em questão, possibilitando a caracterização espectral das áreas ardidas. Com base nos resultados obtido definiu-se uma tranformação no espaço do infravermelho próximo e médio com o objetivo de maximizar a informação espectral de forma a que as superfícies vegetadas pudessem ser efectivamente discriminadas e as áreas ardidas identificadas. A tranformação baseia-se na diferença entre a reflectância nos infravermelhos próximo e médio, em conjunto com a distância a um ponto de convergência no espaço espectral dos infravermelhos próximo e médio, ponto esse representativo de uma área completamente ardida. A tranformação permitiu a definição de um novo sistema de coordenadas, o qual provou ser bastante útil no que diz respeito á identificação de áreas ardidas. Este novo espaço de coordenadas constitui uma inovação na área dos estudos de queimadas, já que permite ao mesmo tempo definir dois tipos de índices, o primeiro dos quais identifica superfícies que contém ou não biomassa e o segundo identifica, de entre as superfícies que contêm biomassa, a quantidade de água presente, podendo variar de vegetação verde (abundância de água) até áreas ardidas (ausência de água). Além de distiguir áreas ardidas, os índices desenvolvidos podem ainda ser aplicados em outros casos como, por exemplo, estudos de estresse hídrico e secas.DSA/INPE; Portuguese Foundation of Science and Technology (Fundação para a Ciência e Tecnologia / FCT)(SFRH/BD/21650/2005

    ESTIMATING SURFACE LONGWAVE RADIATION AND APPLICATIONS TO HIGH LATITUDE ISSUES

    Get PDF
    Two models, with distinct advantages for calculating downwelling surface longwave (DSLW) radiation under all sky conditions are presented. Both models are driven with a combination of Moderate Resolution Imaging Spectroradiometer (MODIS) level-3 cloud parameters and information from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim model. To compute the clear sky component of DSLW the first model DSLW/UMD v1 utilizes a globally applicable parameterization. The second generation model DSLW/UMD v2 utilizes a two layer feed-forward artificial neural network with sigmoid hidden neurons and linear output neurons. When computing the cloud contribution to DSLW, DSLW/UMD v1 implements a commonly used statistical model to calculate cloud vertical height while in DSLW/UMD v2 the cloud base temperature is estimated by using an independent artificial neural network based on spatially and temporally co- located MODIS and Cloudsat Cloud Profiling Radar (CPR) and the Cloud-Aerosol Lidar and Infrared Pathfiner Satellite Observation (CALIPSO) Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations. Daily average estimates of DSLW for 2003 to 2009 are compared against ground measurements from the Baseline Surface Radiation Network (BSRN) and show significant improvements over currently available model estimates. DSLW/UMD v2 as optimized for Polar Regions along with a UMD develop shortwave model are used to investigate the role of radiative components in Arctic sea ice anomalies. The correlation between downwelling surface longwave and shortwave radiation and sea ice anomaly for the period from 2003 to 2007 is investigated using the latest Moderate Resolution Imagining Spectroradiometer (MODIS) level-3 cloud parameters and information from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim model. All sky downwelling surface longwave radiation (DSLW), all sky downwelling shortwave radiation (DSSW), all sky total downwelling shortwave and longwave radiation (DSSW + DSLW), and cloud total cloud forcing are individually examined to determine their respective correlation to sea ice anomaly. It is determined that these radiation components are not the primary drivers for major sea ice anomalies that occur during the investigated time frame within the 120o E to 210o E region

    Investigation of Thin Cirrus Cloud Optical and Microphysical Properties on the Basis of Satellite Observations and Fast Radiative Transfer Models

    Get PDF
    This dissertation focuses on the global investigation of optically thin cirrus cloud optical thickness (tau) and microphysical properties, such as, effective particle size (D_(eff)) and ice crystal habits (shapes), based on the global satellite observations and fast radiative transfer models (RTMs). In the first part, we develop two computationally efficient RTMs simulating satellite observations under cloudy-sky conditions in the visible/shortwave infrared (VIS/SWIR) and thermal inferred (IR) spectral regions, respectively. To mitigate the computational burden associated with absorption, thermal emission and multiple scattering, we generate pre-computed lookup tables (LUTs) using two rigorous models, i.e., the line-by-line radiative transfer model (LBLRTM) and the discrete ordinates radiative transfer model (DISORT). The second part introduces two methods (i.e., VIS/SWIR- and IR-based methods) to retrieve tau and D_(eff) from satellite observations in corresponding spectral regions of the two RTMs. We discuss the advantages and weakness of the two methods by estimating the impacts from different error sources on the retrievals through sensitivity studies. Finally, we develop a new method to infer the scattering phase functions of optically thin cirrus clouds in a water vapor absorption channel (1.38-µm). We estimate the ice crystal habits and surface structures by comparing the inferred scattering phase functions and numerically simulated phase functions calculated using idealized habits. We find two critical features of the two retrieval methods: (1) the IR-based method is more sensitive to optically thin cirrus cloud, and (2) the VIS/SWIR-based method is more sensitive to the pre-assumed ice cloud microphysical parameterization schemes. We derive the optically thin cirrus cloud phase functions based on the two methods. We find that small column-like particles (e.g., solid columns and columnaggregates) and droxtals with rough surfaces are likely to reside in optically thin cirrus clouds

    Mixed-phase clouds, thin cirrus clouds, and OLR over the tropics: observations, retrievals, and radiative impacts

    Get PDF
    The tropics is a very important region in terms of earth’s radiation budget because the net radiative heating is largest in the tropics and that surplus energy is redistributed by the circulations of oceans and atmospheres. Moreover, a large number of clouds are formed by deep convection and convergence of water vapor. Thus, it is very important to understand the radiative energy balance of the tropics and the effect of clouds on the radiation field. For mixed-phase clouds, error analyses pertaining to the inference of effective particle sizes and optical thicknesses are performed. Errors are calculated with respect to the assumption of a cloud containing solely liquid or ice phase particles. The analyses suggest that the effective particle size inferred for a mixed-phase cloud can be underestimated (or overestimated) if a pure liquid phase (or pure ice phase) is assumed for the cloud, whereas the corresponding cloud optical thickness can be overestimated (or underestimated). The analyses of optical depth and fraction of occurrence for thin cirrus clouds showed that about 40% of pixels flagged as clear-sky contain detectible thin cirrus clouds. The regions of high occurrence and large optical depth located around deep convection showed seasonal variations. The thin cirrus clouds occur more frequently with larger optical depth in the northern (southern) hemisphere during spring and summer (autumn and winter). The net cloud radiative forcing by thin cirrus clouds is positive at the top of atmosphere and is negative at the bottom of atmosphere. The difference in OLR between measurement and model is 4.2 Wm-2 for September 2005. The difference is smaller in moist regions and larger in drier regions. OLR increases with increasing surface temperatures up to 300 K but decreases at surface temperatures larger than 300 K due to the strong absorption of increased water vapor. In summary, if the surface temperature is lower than the threshold of convection (300 K), temperature is a dominant factor in OLR and if the surface temperature is larger than 300 K, OLR is strongly influenced by water vapor
    corecore