52 research outputs found

    Learning to Address Intra-segment Misclassification in Retinal Imaging

    Get PDF
    Accurate multi-class segmentation is a long-standing challenge in medical imaging, especially in scenarios where classes share strong similarity. Segmenting retinal blood vessels in retinal photographs is one such scenario, in which arteries and veins need to be identified and differentiated from each other and from the background. Intra-segment misclassification, i.e. veins classified as arteries or vice versa, frequently occurs when arteries and veins intersect, whereas in binary retinal vessel segmentation, error rates are much lower. We thus propose a new approach that decomposes multi-class segmentation into multiple binary, followed by a binary-to-multi-class fusion network. The network merges representations of artery, vein, and multi-class feature maps, each of which are supervised by expert vessel annotation in adversarial training. A skip-connection based merging process explicitly maintains class-specific gradients to avoid gradient vanishing in deep layers, to favor the discriminative features. The results show that, our model respectively improves F1-score by 4.4%, 5.1%, and 4.2% compared with three state-of-the-art deep learning based methods on DRIVE-AV, LES-AV, and HRF-AV data sets. Code: https://github.com/rmaphoh/Learning-AVSegmentatio

    Learning to Address Intra-segment Misclassification in Retinal Imaging

    Get PDF
    Accurate multi-class segmentation is a long-standing challenge in medical imaging, especially in scenarios where classes share strong similarity. Segmenting retinal blood vessels in retinal photographs is one such scenario, in which arteries and veins need to be identified and differentiated from each other and from the background. Intra-segment misclassification, i.e. veins classified as arteries or vice versa, frequently occurs when arteries and veins intersect, whereas in binary retinal vessel segmentation, error rates are much lower. We thus propose a new approach that decomposes multi-class segmentation into multiple binary, followed by a binary-to-multi-class fusion network. The network merges representations of artery, vein, and multi-class feature maps, each of which are supervised by expert vessel annotation in adversarial training. A skip-connection based merging process explicitly maintains class-specific gradients to avoid gradient vanishing in deep layers, to favor the discriminative features. The results show that, our model respectively improves F1-score by 4.4%, 5.1%, and 4.2% compared with three state-of-the-art deep learning based methods on DRIVE-AV, LES-AV, and HRF-AV data sets. Code: https://github.com/rmaphoh/Learning-AVSegmentatio

    A Quasi-Newton Subspace Trust Region Algorithm for Least-square Problems in Min-max Optimization

    Full text link
    The first-order optimality conditions of convexly constrained nonconvex-nonconcave min-max optimization problems formulate variational inequality problems, which are equivalent to a system of nonsmooth equations. In this paper, we propose a quasi-Newton subspace trust region (QNSTR) algorithm for the least-square problem defined by the smoothing approximation of the nonsmooth equation. Based on the structure of the least-square problem, we use an adaptive quasi-Newton formula to approximate the Hessian matrix and solve a low-dimensional strongly convex quadratic program with ellipse constraints in a subspace at each step of QNSTR algorithm. According to the structure of the adaptive quasi-Newton formula and the subspace technique, the strongly convex quadratic program at each step can be solved efficiently. We prove the global convergence of QNSTR algorithm to an ϵ\epsilon-first-order stationary point of the min-max optimization problem. Moreover, we present numerical results of QNSTR algorithm with different subspaces for the mixed generative adversarial networks in eye image segmentation using real data to show the efficiency and effectiveness of QNSTR algorithm for solving large scale min-max optimization problems
    • …
    corecore