6 research outputs found

    CEQE: Contextualized Embeddings for Query Expansion

    Get PDF
    In this work we leverage recent advances in context-sensitive language models to improve the task of query expansion. Contextualized word representation models, such as ELMo and BERT, are rapidly replacing static embedding models. We propose a new model, Contextualized Embeddings for Query Expansion (CEQE), that utilizes query-focused contextualized embedding vectors. We study the behavior of contextual representations generated for query expansion in ad-hoc document retrieval. We conduct our experiments on probabilistic retrieval models as well as in combination with neural ranking models. We evaluate CEQE on two standard TREC collections: Robust and Deep Learning. We find that CEQE outperforms static embedding-based expansion methods on multiple collections (by up to 18% on Robust and 31% on Deep Learning on average precision) and also improves over proven probabilistic pseudo-relevance feedback (PRF) models. We further find that multiple passes of expansion and reranking result in continued gains in effectiveness with CEQE-based approaches outperforming other approaches. The final model incorporating neural and CEQE-based expansion score achieves gains of up to 5% in P@20 and 2% in AP on Robust over the state-of-the-art transformer-based re-ranking model, Birch

    Event-Centric Query Expansion in Web Search

    Full text link
    In search engines, query expansion (QE) is a crucial technique to improve search experience. Previous studies often rely on long-term search log mining, which leads to slow updates and is sub-optimal for time-sensitive news searches. In this work, we present Event-Centric Query Expansion (EQE), a novel QE system that addresses these issues by mining the best expansion from a significant amount of potential events rapidly and accurately. This system consists of four stages, i.e., event collection, event reformulation, semantic retrieval and online ranking. Specifically, we first collect and filter news headlines from websites. Then we propose a generation model that incorporates contrastive learning and prompt-tuning techniques to reformulate these headlines to concise candidates. Additionally, we fine-tune a dual-tower semantic model to function as an encoder for event retrieval and explore a two-stage contrastive training approach to enhance the accuracy of event retrieval. Finally, we rank the retrieved events and select the optimal one as QE, which is then used to improve the retrieval of event-related documents. Through offline analysis and online A/B testing, we observe that the EQE system significantly improves many metrics compared to the baseline. The system has been deployed in Tencent QQ Browser Search and served hundreds of millions of users. The dataset and baseline codes are available at https://open-event-hub.github.io/eqe .Comment: ACL 2023 Industry Trac

    Pseudo-Relevance Feedback for Multiple Representation Dense Retrieval

    Full text link
    Pseudo-relevance feedback mechanisms, from Rocchio to the relevance models, have shown the usefulness of expanding and reweighting the users' initial queries using information occurring in an initial set of retrieved documents, known as the pseudo-relevant set. Recently, dense retrieval -- through the use of neural contextual language models such as BERT for analysing the documents' and queries' contents and computing their relevance scores -- has shown a promising performance on several information retrieval tasks still relying on the traditional inverted index for identifying documents relevant to a query. Two different dense retrieval families have emerged: the use of single embedded representations for each passage and query (e.g. using BERT's [CLS] token), or via multiple representations (e.g. using an embedding for each token of the query and document). In this work, we conduct the first study into the potential for multiple representation dense retrieval to be enhanced using pseudo-relevance feedback. In particular, based on the pseudo-relevant set of documents identified using a first-pass dense retrieval, we extract representative feedback embeddings (using KMeans clustering) -- while ensuring that these embeddings discriminate among passages (based on IDF) -- which are then added to the query representation. These additional feedback embeddings are shown to both enhance the effectiveness of a reranking as well as an additional dense retrieval operation. Indeed, experiments on the MSMARCO passage ranking dataset show that MAP can be improved by upto 26% on the TREC 2019 query set and 10% on the TREC 2020 query set by the application of our proposed ColBERT-PRF method on a ColBERT dense retrieval approach.Comment: 10 page

    CEQE: Contextualized Embeddings for Query Expansion

    Get PDF
    In this work we leverage recent advances in context-sensitive language models to improve the task of query expansion. Contextualized word representation models, such as ELMo and BERT, are rapidly replacing static embedding models. We propose a new model, Contextualized Embeddings for Query Expansion (CEQE), that utilizes query-focused contextualized embedding vectors. We study the behavior of contextual representations generated for query expansion in ad-hoc document retrieval. We conduct our experiments on probabilistic retrieval models as well as in combination with neural ranking models. We evaluate CEQE on two standard TREC collections: Robust and Deep Learning. We find that CEQE outperforms static embedding-based expansion methods on multiple collections (by up to 18% on Robust and 31% on Deep Learning on average precision) and also improves over proven probabilistic pseudo-relevance feedback (PRF) models. We further find that multiple passes of expansion and reranking result in continued gains in effectiveness with CEQE-based approaches outperforming other approaches. The final model incorporating neural and CEQE-based expansion score achieves gains of up to 5% in P@20 and 2% in AP on Robust over the state-of-the-art transformer-based re-ranking model, Birch

    Pretrained Transformers for Text Ranking: BERT and Beyond

    Get PDF
    The goal of text ranking is to generate an ordered list of texts retrieved from a corpus in response to a query. Although the most common formulation of text ranking is search, instances of the task can also be found in many natural language processing applications. This survey provides an overview of text ranking with neural network architectures known as transformers, of which BERT is the best-known example. The combination of transformers and self-supervised pretraining has been responsible for a paradigm shift in natural language processing (NLP), information retrieval (IR), and beyond. In this survey, we provide a synthesis of existing work as a single point of entry for practitioners who wish to gain a better understanding of how to apply transformers to text ranking problems and researchers who wish to pursue work in this area. We cover a wide range of modern techniques, grouped into two high-level categories: transformer models that perform reranking in multi-stage architectures and dense retrieval techniques that perform ranking directly. There are two themes that pervade our survey: techniques for handling long documents, beyond typical sentence-by-sentence processing in NLP, and techniques for addressing the tradeoff between effectiveness (i.e., result quality) and efficiency (e.g., query latency, model and index size). Although transformer architectures and pretraining techniques are recent innovations, many aspects of how they are applied to text ranking are relatively well understood and represent mature techniques. However, there remain many open research questions, and thus in addition to laying out the foundations of pretrained transformers for text ranking, this survey also attempts to prognosticate where the field is heading
    corecore