7,046 research outputs found

    The End of Slow Networks: It's Time for a Redesign

    Full text link
    Next generation high-performance RDMA-capable networks will require a fundamental rethinking of the design and architecture of modern distributed DBMSs. These systems are commonly designed and optimized under the assumption that the network is the bottleneck: the network is slow and "thin", and thus needs to be avoided as much as possible. Yet this assumption no longer holds true. With InfiniBand FDR 4x, the bandwidth available to transfer data across network is in the same ballpark as the bandwidth of one memory channel, and it increases even further with the most recent EDR standard. Moreover, with the increasing advances of RDMA, the latency improves similarly fast. In this paper, we first argue that the "old" distributed database design is not capable of taking full advantage of the network. Second, we propose architectural redesigns for OLTP, OLAP and advanced analytical frameworks to take better advantage of the improved bandwidth, latency and RDMA capabilities. Finally, for each of the workload categories, we show that remarkable performance improvements can be achieved

    The End of a Myth: Distributed Transactions Can Scale

    Full text link
    The common wisdom is that distributed transactions do not scale. But what if distributed transactions could be made scalable using the next generation of networks and a redesign of distributed databases? There would be no need for developers anymore to worry about co-partitioning schemes to achieve decent performance. Application development would become easier as data placement would no longer determine how scalable an application is. Hardware provisioning would be simplified as the system administrator can expect a linear scale-out when adding more machines rather than some complex sub-linear function, which is highly application specific. In this paper, we present the design of our novel scalable database system NAM-DB and show that distributed transactions with the very common Snapshot Isolation guarantee can indeed scale using the next generation of RDMA-enabled network technology without any inherent bottlenecks. Our experiments with the TPC-C benchmark show that our system scales linearly to over 6.5 million new-order (14.5 million total) distributed transactions per second on 56 machines.Comment: 12 page

    Database architectures for modern hardware: report from Dagstuhl Seminar 18251

    Get PDF
    The requirements of emerging applications on the one hand and the trends in computing hardware and systems on the other hand demand a fundamental rethinking of current data management architectures. Based on the broad consensus that this rethinking requires expertise from different research disciplines, the goal of this seminar was to bring together researchers and practitioners from these areas representing both the software and hardware sides and to foster cross-cutting architectural discussions. The outcome of this seminar was not only an identification of promising hardware technologies and their exploitation in data management systems but also a set of use cases, studies, and experiments for new architectural concepts

    Modularis: Modular Relational Analytics over Heterogeneous Distributed Platforms

    Full text link
    The enormous quantity of data produced every day together with advances in data analytics has led to a proliferation of data management and analysis systems. Typically, these systems are built around highly specialized monolithic operators optimized for the underlying hardware. While effective in the short term, such an approach makes the operators cumbersome to port and adapt, which is increasingly required due to the speed at which algorithms and hardware evolve. To address this limitation, we present Modularis, an execution layer for data analytics based on sub-operators, i.e.,composable building blocks resembling traditional database operators but at a finer granularity. To demonstrate the advantages of our approach, we use Modularis to build a distributed query processing system supporting relational queries running on an RDMA cluster, a serverless cloud platform, and a smart storage engine. Modularis requires minimal code changes to execute queries across these three diverse hardware platforms, showing that the sub-operator approach reduces the amount and complexity of the code. In fact, changes in the platform affect only sub-operators that depend on the underlying hardware. We show the end-to-end performance of Modularis by comparing it with a framework for SQL processing (Presto), a commercial cluster database (SingleStore), as well as Query-as-a-Service systems (Athena, BigQuery). Modularis outperforms all these systems, proving that the design and architectural advantages of a modular design can be achieved without degrading performance. We also compare Modularis with a hand-optimized implementation of a join for RDMA clusters. We show that Modularis has the advantage of being easily extensible to a wider range of join variants and group by queries, all of which are not supported in the hand-tuned join.Comment: Accepted at PVLDB vol. 1

    Multidimensional Range Queries on Modern Hardware

    Full text link
    Range queries over multidimensional data are an important part of database workloads in many applications. Their execution may be accelerated by using multidimensional index structures (MDIS), such as kd-trees or R-trees. As for most index structures, the usefulness of this approach depends on the selectivity of the queries, and common wisdom told that a simple scan beats MDIS for queries accessing more than 15%-20% of a dataset. However, this wisdom is largely based on evaluations that are almost two decades old, performed on data being held on disks, applying IO-optimized data structures, and using single-core systems. The question is whether this rule of thumb still holds when multidimensional range queries (MDRQ) are performed on modern architectures with large main memories holding all data, multi-core CPUs and data-parallel instruction sets. In this paper, we study the question whether and how much modern hardware influences the performance ratio between index structures and scans for MDRQ. To this end, we conservatively adapted three popular MDIS, namely the R*-tree, the kd-tree, and the VA-file, to exploit features of modern servers and compared their performance to different flavors of parallel scans using multiple (synthetic and real-world) analytical workloads over multiple (synthetic and real-world) datasets of varying size, dimensionality, and skew. We find that all approaches benefit considerably from using main memory and parallelization, yet to varying degrees. Our evaluation indicates that, on current machines, scanning should be favored over parallel versions of classical MDIS even for very selective queries

    Modeling and Analyzing the Power Consumption in Query Processing For Distributed Database

    Get PDF
    Green computing has been generally practiced in almost all kind of fields especially in the recent years as environmental sustainability is getting more important. High power consumption increases the carbon emission which is adverse to the environment. This project focuses on applying green computing in query processing specifically for distributed database in healthcare industry. The information about a patient is stored in the database of the hospital the patient visited. However, currently this information is not being shared among hospitals which are crucial for diagnosis purpose. Hence, the objective of this project is to model the process of data retrieval from database distributed at different hospitals by using different query processing strategies and analyzes the energy consumption to access data from these distributed databases. Two strategies are used to retrieve the distributed data during simulation which are complete replication and horizontal fragmentation. Based on the analyzed result from the simulation, the identified energy-efficient strategy is complete replication which consumed lower power consumption by enabling local access to data stored in distributed database
    • …
    corecore