3,025,134 research outputs found

    Double Potts chain and exact results for some two-dimensional models

    Full text link
    A closed-form exact analytical solution for the q-state Potts model on a ladder 2 x oo with arbitrary two-, three-, and four-site interactions in a unit cell is presented. Using the obtained solution it is shown that the finite-size internal energy equation yields an accurate value of the critical temperature for the triangular Potts lattice with three-site interactions in alternate triangular faces. It is argued that the above equation is exact at least for self-dual models on isotropic lattices.Comment: 13 pages in latex and 2 ps figures. preprint ICTP IC/2000/176; ZhETF 120 (2001) (in press

    Exact thermostatic results for the n-vector model on the harmonic chain

    Full text link
    Revised Version with corrections of misprints.Comment: LaTeX, 6 pages, 1 Figure upon reques

    Exact Results for the Bipartite Entanglement Entropy of the AKLT spin-1 chain

    Full text link
    We study the entanglement between two domains of a spin-1 AKLT chain subject to open boundary conditions. In this case the ground-state manifold is four-fold degenerate. We summarize known results and present additional exact analytical results for the von Neumann entanglement entropy, as a function of both the size of the domains and the total system size for {\it all} four degenerate ground-states. In the large l,Ll,L limit the entanglement entropy approaches ln(2)\ln(2) and 2ln(2)2\ln(2) for the STz=±1S^z_T=\pm 1 and STz=0S^z_T=0 states, respectively. In all cases, it is found that this constant is approached exponentially fast defining a length scale ξ=1/ln(3)\xi=1/\ln(3) equal to the known bulk correlation length.Comment: 11 pages, 3 figure

    The motion of the freely falling chain tip

    Get PDF
    The dynamics of the tip of the falling chain is analyzed. Results of laboratory experiments are presented and compared with results of numerical simulations. Time dependences of the velocity and the acceleration of the chain tip for a number of different initial conformations of the chain are determined. A simple analytical model of the system is also considered.Comment: 29 pages, 13 figure

    Analytical Results for Multifractal Properties of Spectra of Quasiperiodic Hamiltonians near the Periodic Chain

    Full text link
    The multifractal properties of the electronic spectrum of a general quasiperiodic chain are studied in first order in the quasiperiodic potential strength. Analytical expressions for the generalized dimensions are found and are in good agreement with numerical simulations. These first order results do not depend on the irrational incommensurability.Comment: 10 Pages in RevTeX, 2 Postscript figure

    Inhomogeneous quenches in a fermionic chain: exact results

    Full text link
    We consider the non-equilibrium physics induced by joining together two tight binding fermionic chains to form a single chain. Before being joined, each chain is in a many-fermion ground state. The fillings (densities) in the two chains might be the same or different. We present a number of exact results for the correlation functions in the non-interacting case. We present a short-time expansion, which can sometimes be fully resummed, and which reproduces the so-called `light cone' effect or wavefront behavior of the correlators. For large times, we show how all interesting physical regimes may be obtained by stationary phase approximation techniques. In particular, we derive semiclassical formulas in the case when both time and positions are large, and show that these are exact in the thermodynamic limit. We present subleading corrections to the large-time behavior, including the corrections near the edges of the wavefront. We also provide results for the return probability or Loschmidt echo. In the maximally inhomogeneous limit, we prove that it is exactly gaussian at all times. The effects of interactions on the Loschmidt echo are also discussed.Comment: 5 pages+14 pages supplementary material+9 figure

    Ab initio many-body calculations on infinite carbon and boron-nitrogen chains

    Full text link
    In this paper we report first-principles calculations on the ground-state electronic structure of two infinite one-dimensional systems: (a) a chain of carbon atoms and (b) a chain of alternating boron and nitrogen atoms. Meanfield results were obtained using the restricted Hartree-Fock approach, while the many-body effects were taken into account by second-order M{\o}ller-Plesset perturbation theory and the coupled-cluster approach. The calculations were performed using 6-31GG^{**} basis sets, including the d-type polarization functions. Both at the Hartree-Fock (HF) and the correlated levels we find that the infinite carbon chain exhibits bond alternation with alternating single and triple bonds, while the boron-nitrogen chain exhibits equidistant bonds. In addition, we also performed density-functional-theory-based local density approximation (LDA) calculations on the infinite carbon chain using the same basis set. Our LDA results, in contradiction to our HF and correlated results, predict a very small bond alternation. Based upon our LDA results for the carbon chain, which are in agreement with an earlier LDA calculation calculation [ E.J. Bylaska, J.H. Weare, and R. Kawai, Phys. Rev. B 58, R7488 (1998).], we conclude that the LDA significantly underestimates Peierls distortion. This emphasizes that the inclusion of many-particle effects is very important for the correct description of Peierls distortion in one-dimensional systems.Comment: 3 figures (included). To appear in Phys. Rev.

    Ballistic magneto-thermal transport in a Heisenberg spin chain at low temperatures

    Full text link
    We study ballistic thermal transport in Heisenberg spin chain with nearest-neighbor ferromagnetic interactions at low temperatures. Explicit expressions for transmission coefficients are derived for thermal transport in a periodic spin chain of arbitrary junction length by a spin-wave model. Our analytical results agree very well with the ones from nonequilibrium Green's function method. Our study shows that the transmission coefficient oscillates with the frequency of thermal wave. Moreover, the thermal transmission shows strong dependence on the intrachain coupling, the length of the spin chain, and the external magnetic field. The results demonstrate the possibility of manipulating spin-wave propagation and magnetothermal conductance in the spin-chain junction by adjusting the intrachain coupling and/or the external magnetic field.Comment: 6 pages, 7 figure
    corecore