22,954 research outputs found

    Stein Estimation for Spherically Symmetric Distributions: Recent Developments

    Full text link
    This paper reviews advances in Stein-type shrinkage estimation for spherically symmetric distributions. Some emphasis is placed on developing intuition as to why shrinkage should work in location problems whether the underlying population is normal or not. Considerable attention is devoted to generalizing the "Stein lemma" which underlies much of the theoretical development of improved minimax estimation for spherically symmetric distributions. A main focus is on distributional robustness results in cases where a residual vector is available to estimate an unknown scale parameter, and, in particular, in finding estimators which are simultaneously generalized Bayes and minimax over large classes of spherically symmetric distributions. Some attention is also given to the problem of estimating a location vector restricted to lie in a polyhedral cone.Comment: Published in at http://dx.doi.org/10.1214/10-STS323 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Asymptotic minimax risk of predictive density estimation for non-parametric regression

    Full text link
    We consider the problem of estimating the predictive density of future observations from a non-parametric regression model. The density estimators are evaluated under Kullback--Leibler divergence and our focus is on establishing the exact asymptotics of minimax risk in the case of Gaussian errors. We derive the convergence rate and constant for minimax risk among Bayesian predictive densities under Gaussian priors and we show that this minimax risk is asymptotically equivalent to that among all density estimators.Comment: Published in at http://dx.doi.org/10.3150/09-BEJ222 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Guidance, flight mechanics and trajectory optimization. Volume 11 - Guidance equations for orbital operations

    Get PDF
    Mathematical formulation of guidance equations and solutions for orbital space mission

    Bayesian semiparametric multi-state models

    Get PDF
    Multi-state models provide a unified framework for the description of the evolution of discrete phenomena in continuous time. One particular example is Markov processes which can be characterised by a set of time-constant transition intensities between the states. In this paper, we will extend such parametric approaches to semiparametric models with flexible transition intensities based on Bayesian versions of penalised splines. The transition intensities will be modelled as smooth functions of time and can further be related to parametric as well as nonparametric covariate effects. Covariates with time-varying effects and frailty terms can be included in addition. Inference will be conducted either fully Bayesian (using Markov chain Monte Carlo simulation techniques) or empirically Bayesian (based on a mixed model representation). A counting process representation of semiparametric multi-state models provides the likelihood formula and also forms the basis for model validation via martingale residual processes. As an application, we will consider human sleep data with a discrete set of sleep states such as REM and non-REM phases. In this case, simple parametric approaches are inappropriate since the dynamics underlying human sleep are strongly varying throughout the night and individual specific variation has to be accounted for using covariate information and frailty terms
    corecore