258 research outputs found

    Restricted Motzkin permutations, Motzkin paths, continued fractions, and Chebyshev polynomials

    Get PDF
    We say that a permutation Ο€\pi is a Motzkin permutation if it avoids 132 and there do not exist a<ba<b such that Ο€a<Ο€b<Ο€b+1\pi_a<\pi_b<\pi_{b+1}. We study the distribution of several statistics in Motzkin permutations, including the length of the longest increasing and decreasing subsequences and the number of rises and descents. We also enumerate Motzkin permutations with additional restrictions, and study the distribution of occurrences of fairly general patterns in this class of permutations.Comment: 18 pages, 2 figure

    Permutations with restricted patterns and Dyck paths

    Full text link
    We exhibit a bijection between 132-avoiding permutations and Dyck paths. Using this bijection, it is shown that all the recently discovered results on generating functions for 132-avoiding permutations with a given number of occurrences of the pattern 12...k12... k follow directly from old results on the enumeration of Motzkin paths, among which is a continued fraction result due to Flajolet. As a bonus, we use these observations to derive further results and a precise asymptotic estimate for the number of 132-avoiding permutations of {1,2,...,n}\{1,2,...,n\} with exactly rr occurrences of the pattern 12...k12... k. Second, we exhibit a bijection between 123-avoiding permutations and Dyck paths. When combined with a result of Roblet and Viennot, this bijection allows us to express the generating function for 123-avoiding permutations with a given number of occurrences of the pattern (kβˆ’1)(kβˆ’2)...1k(k-1)(k-2)... 1k in form of a continued fraction and to derive further results for these permutations.Comment: 17 pages, AmS-Te

    321-polygon-avoiding permutations and Chebyshev polynomials

    Full text link
    A 321-k-gon-avoiding permutation pi avoids 321 and the following four patterns: k(k+2)(k+3)...(2k-1)1(2k)23...(k+1), k(k+2)(k+3)...(2k-1)(2k)123...(k+1), (k+1)(k+2)(k+3)...(2k-1)1(2k)23...k, (k+1)(k+2)(k+3)...(2k-1)(2k)123...k. The 321-4-gon-avoiding permutations were introduced and studied by Billey and Warrington [BW] as a class of elements of the symmetric group whose Kazhdan-Lusztig, Poincare polynomials, and the singular loci of whose Schubert varieties have fairly simple formulas and descriptions. Stankova and West [SW] gave an exact enumeration in terms of linear recurrences with constant coefficients for the cases k=2,3,4. In this paper, we extend these results by finding an explicit expression for the generating function for the number of 321-k-gon-avoiding permutations on n letters. The generating function is expressed via Chebyshev polynomials of the second kind.Comment: 11 pages, 1 figur
    • …
    corecore