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Abstract

We say that a permutation � is a Motzkin permutation if it avoids 132 and there do not exist a < b

such that �a < �b < �b+1. We study the distribution of several statistics in Motzkin permutations,
including the length of the longest increasing and decreasing subsequences and the number of rises
and descents. We also enumerate Motzkin permutations with additional restrictions, and study the
distribution of occurrences of fairly general patterns in this class of permutations.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Background

Let � ∈ Sn and � ∈ Sk be two permutations. We say that � contains � if there exists a
subsequence 1� i1 < i2 < · · ·< ik �n such that (�i1 , . . . , �ik ) is order-isomorphic to �; in
such a context � is usually called a pattern. We say that � avoids �, or is �-avoiding, if such
a subsequence does not exist. The set of all �-avoiding permutations in Sn is denoted by
Sn(�). For an arbitrary finite collection of patterns T, we say that � avoids T if � avoids any
� ∈ T ; the corresponding subset of Sn is denoted by Sn(T ).
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While the case of permutations avoiding a single pattern has attracted much attention,
the case of multiple pattern avoidance remains less investigated. In particular, it is natural,
as the next step, to consider permutations avoiding pairs of patterns �1, �2. This problem
was solved completely for �1, �2 ∈ S3 (see [28]), for �1 ∈ S3 and �2 ∈ S4 (see [30]), and
for �1, �2 ∈ S4 (see [2,15] and references therein). Several recent papers [4,19,14,20–22]
deal with the case �1 ∈ S3, �2 ∈ Sk for various pairs �1, �2. Another natural question is
to study permutations avoiding �1 and containing �2 exactly t times. Such a problem for
certain �1, �2 ∈ S3 and t = 1 was investigated in [26], and for certain �1 ∈ S3, �2 ∈ Sk

in [27,19,14]. Most results in these papers are expressed in terms of Catalan numbers,
Chebyshev polynomials, and continued fractions.

In [1] Babson and Steingrímsson introduced generalized patterns that allow the require-
ment that two adjacent letters in a pattern must be adjacent in the permutation. In this
context, we write a classical pattern with dashes between any two adjacent letters of the
pattern (for example, 1423 as 1-4-2-3). If we omit the dash between two letters, we mean
that for it to be an occurrence in a permutation �, the corresponding letters of � have to be
adjacent. For example, in an occurrence of the pattern 12-3-4 in a permutation �, the letters
in � that correspond to 1 and 2 are adjacent. For instance, the permutation �=3 542 617 has
only one occurrence of the pattern 12-3-4, namely the subsequence 3567, whereas � has
two occurrences of the pattern 1-2-3-4, namely the subsequences 3567 and 3467. Claesson
[5] completed the enumeration of permutations avoiding any single 3-letter generalized
pattern with exactly one adjacent pair of letters. Elizalde and Noy [9] studied some cases
of avoidance of patterns where all letters have to occur in consecutive positions. Claesson
and Mansour [6] (see also [16–18]) presented a complete solution for the number of per-
mutations avoiding any pair of 3-letter generalized patterns with exactly one adjacent pair
of letters. Besides, Kitaev [12] investigated simultaneous avoidance of two or more 3-letter
generalized patterns without internal dashes.

A remark about notation: throughout the paper, a pattern represented with no dashes will
always denote a classical pattern (i.e., with no requirement about elements being consecu-
tive). All the generalized patterns that we will consider will have at least one dash.

1.2. Preliminaries

Catalan numbers are defined by Cn = 1
n+1

(
2n
n

)
for all n�0. The generating function

for the Catalan numbers is given by C(x)= 1−√1−4x
2x

.
Chebyshev polynomials of the second kind (in what follows just Chebyshev polynomials)

are defined by Ur(cos �)= sin(r+1)�
sin � for r �0. Clearly, Ur(t) is a polynomial of degree r in

t with integer coefficients, which satisfies the following recurrence:

U0(t)= 1, U1(t)= 2t and Ur(t)= 2tUr−1(t)− Ur−2(t) for all r �2. (1)

The same recurrence is used to define Ur(t) for r < 0 (for example, U−1(t) = 0 and
U−2(t)=−1). Chebyshev polynomials were invented for the needs of approximation the-
ory, but are also widely used in various other branches of mathematics, including algebra,
combinatorics, and number theory (see [25]). The relation between restricted permutations
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and Chebyshev polynomials was discovered by Chow and West in [4], and later was further
studied by Mansour and Vainshtein [19–22], and Krattenthaler [14].

Recall that a Dyck path of length 2n is a lattice path in Z2 between (0, 0) and (2n, 0)

consisting of up-steps (1, 1) and down-steps (1,−1) which never goes below the x-axis.
Denote byDn the set of Dyck paths of length 2n, and byD=⋃

n�0 Dn the class of all Dyck
paths. If D ∈ Dn, we will write |D| = n. Recall that a Motzkin path of length n is a lattice
path in Z2 between (0, 0) and (n, 0) consisting of up-steps (1, 1), down-steps (1,−1) and
horizontal steps (1, 0) which never goes below the x-axis. Denote by Mn the set of Motzkin
paths with n steps, and let M=⋃

n�0 Mn. We will write |M| = n if M ∈Mn. Sometimes
it will be convenient to encode each up-step by a letter u, each down-step by d, and each
horizontal step by h. Denote by Mn=|Mn| the nth Motzkin number. The generating function

for these numbers is M(x)= 1−x−√1−2x−3x2

2x2 .
Define a Motzkin permutation � to be a 132-avoiding permutation in which there do not

exist indices a < b such that �a < �b < �b+1. Otherwise, if such indices exist, �a, �b, �b+1
is called an occurrence of the pattern 1-23 (for instance, see [5]). For example, there are
exactly four Motzkin permutations of length 3, namely, 213, 231, 312, and 321. We denote
the set of all Motzkin permutations in Sn by Mn. The main reason for the term “Motzkin
permutation” is that |Mn| =Mn, as we will see in Section 2.

It follows from the definition that the set Mn is the same as the set of 132-avoiding
permutations � ∈ Sn where there is no a such that �a < �a+1 < �a+2. Indeed, assume that
� ∈ Sn(132) has an occurrence of 1-23, say �a < �b < �b+1 with a < b. Now, if �b−1 > �b,
then � would have an occurrence of 132, namely �a�b−1�b+1. Therefore, �b−1 < �b < �b+1,
so � has three consecutive increasing elements.

For any subset A ∈ Sn and any pattern �, define A(�) := A∩Sn(�). For example,Mn(�)

denotes the set of Motzkin permutations of length n that avoid �.

1.3. Organization of the paper

In Section 2 we exhibit a bijection between the set of Motzkin permutations and the set
of Motzkin paths. Then we use it to obtain generating functions of Motzkin permutations
with respect to the length of the longest decreasing and increasing subsequences together
with the number of rises. The section ends with another application of the bijection, to the
enumeration of fixed points in permutations avoiding simultaneously 231 and 32-1.

In Section 3 we consider additional restrictions on Motzkin permutations. Using a block
decomposition, we enumerate Motzkin permutations avoiding the pattern 12 . . . k, and we
find the distribution of occurrences of this pattern in Motzkin permutations. Then we obtain
generating functions for Motzkin permutations avoiding patterns of more general shape.
We conclude the section by considering two classes of generalized patterns (as described
above), and we study its distribution in Motzkin permutations.

2. Bijection � :Mn −→Mn

In this section we establish a bijection � between Motzkin permutations and Motzkin
paths. This bijection allows us to describe the distribution of some interesting statistics on
the set of Motzkin permutations.



S. Elizalde, T. Mansour / Discrete Mathematics 305 (2005) 170–189 173

Fig. 1. The bijection �.

2.1. The bijection �

We can give a bijection � betweenMn andMn. In order to do so we use first the following
bijection � from Sn(132) to Dn, which is essentially due to Krattenthaler [14], and also
described independently by Fulmek [11] and Reifegerste [24]. Consider � ∈ Sn(132) given
as an n×n array with crosses in the squares (i, �i ). Take the path with up and right steps that
goes from the lower-left corner to the upper-right corner, leaving all the crosses to the right,
and staying always as close to the diagonal connecting these two corners as possible. Then
�(�) is the Dyck path obtained from this path by reading an up-step every time the path goes
up and a down-step every time it goes right. Fig. 1 shows an example when �= 67 435 281.

There is an easy way to recover � from �(�). Assume we are given the path from the
lower-left corner to the upper-right corner of the array. Row by row, put a cross in the
leftmost square to the right of this path such that there is exactly one cross in each column.
This gives us � back.

One can see that � ∈ Sn(132) avoids 1-23 if and only if the Dyck path �(�) does
not contain three consecutive up-steps (a triple rise). Indeed, assume that �(�) has three
consecutive up-steps. Then, the path from the lower-left corner to the upper-right corner
of the array has three consecutive vertical steps. The crosses in the corresponding three
rows give three consecutive increasing elements in � (this follows from the definition of the
inverse of �), and hence an occurrence of 1-23.

Reciprocally, assume now that � has an occurrence of 1-23. The path from the lower-left
to the upper-right corner of the array of � must have two consecutive vertical steps in the
rows of the crosses corresponding to “2” and “3”. But if �(�) has no triple rise, the next
step of this path must be horizontal, and the cross corresponding to “2” must be right below
it. But then all the crosses above this cross are to the right of it, which contradicts the fact
that this was an occurrence of 1-23.

Denote by En the set of Dyck paths of length 2n with no triple rise. We have given a
bijection between Mn and En. The second step is to exhibit a bijection between En and
Mn, so that � will be defined as the composition of the two bijections. Given D ∈ En,
divide it in n blocks, splitting after each down-step. Since D has no triple rises, each block
is of one of these three forms: uud, ud, d. From left to right, transform the blocks according
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to the rule

uud → u,

ud → h,

d → d . (2)

We obtain a Motzkin path of length n. This step is clearly a bijection.
Up to reflection of the Motzkin path over a vertical line, � is essentially the same bijection

that was given by Claesson [5] betweenMn and Mn, using a recursive definition.

2.2. Statistics in Mn

Here we show applications of the bijection � to give generating functions for several
statistics on Motzkin permutations. For a permutation �, denote by lis(�) and lds(�), re-
spectively, the length of the longest increasing subsequence and the length of the longest
decreasing subsequence of �. The following lemma follows from the definitions of the
bijections and from the properties of � (see [14]).

Lemma 1. Let � ∈Mn, let D = �(�) ∈ Dn, and let M =�(�) ∈Mn. We have

(1) lds(�)= #{peaks of D} = #{steps u in M} + #{steps h in M},
(2) lis(�)= height of D = height of M + 1,
(3) #{rises of �} = #{double rises of D} = #{steps u in M}.

Theorem 2. The generating function for Motzkin permutations with respect to the length
of the longest decreasing subsequence and to the number of rises is

A(v, y, x) :=
∑
n�0

∑
�∈Mn

vlds(�)y#{rises of �}xn

= 1− vx −√
1− 2vx + (v2 − 4vy)x2

2vyx2 .

Moreover,

A(v, y, x)=
∑
n�0

∑
m�0

1

n+ 1

(
2n

n

) (
m+ 2n

2n

)
xm+2nvm+nyn.

Proof. By Lemma 1, we can express A as

A(v, y, x)=
∑

M∈M
v#{steps u in M}+#{steps h in M}y#{steps u in M}x|M|.

Using the standard decomposition of Motzkin paths, we obtain the following equation for
the generating function A:

A(v, y, x)= 1+ vxA(v, y, x)+ vyx2A2(v, y, x). (3)
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Indeed, any nonempty M ∈M can be written uniquely in one of the following two forms:

(1) M = hM1,
(2) M = uM1dM2,

where M1, M2, M3 are arbitrary Motzkin paths. In the first case, the number of hori-
zontal steps of hM1 is one more than in M1, the number of up steps is the same, and
|hM1| = |M1| + 1, so we get the term vxA(v, y, x). Similarly, the second case gives the
term vyx2A2(v, y, x). Solving Eq. (3) we get that

A(v, y, x)= 1− vx −√
1− 2vx + (v2 − 4vy)x2

2vyx2 = 1

1− vx
C

(
vyx2

(1− vx)2

)
,

where C(t)= 1−√1−4t
2t

is the generating function for the Catalan numbers. Thus,

A(v, y, x)=
∑
n�0

1

n+ 1

(
2n

n

)
ynx2nvn

(1− vx)2n+1

=
∑
n�0

∑
m�0

1

n+ 1

(
2n

n

) (
m+ 2n

2n

)
xm+2nvm+nyn. �

Theorem 3. For k > 0, let

Bk(v, y, x) :=
∑
n�0

∑
�∈Mn(12...(k+1))

vlds(�)y#{rises of �}xn

be the generating function for Motzkin permutations avoiding 12 . . . (k+ 1) with respect to
the length of the longest decreasing subsequence and to the number of rises. Then we have
the recurrence

Bk(v, y, x)= 1

1− vx − vyx2Bk−1(v, y, x)
,

with B1(v, y, x)= 1
1−vx

. Thus, Bk can be expressed as

Bk(v, y, x)= 1

1− vx − vyx2

1− vx − vyx2

. . .

1− vx − vyx2/(1− vx)

,

where the fraction has k levels, or in terms of Chebyshev polynomials of the second kind,
as

Bk(v, y, x)= Uk−1((1− vx)/2x
√

vy)

x
√

vyUk((1− vx)/2x
√

vy)
.
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Proof. The condition that � avoids 12 . . . (k + 1) is equivalent to the condition lis(�)�k.
By Lemma 1, permutations in Mn satisfying this condition are mapped by � to Motzkin
paths of height strictly less than k. Thus, we can express Bk as

Bk(v, y, x)=
∑

M∈M
of height<k

v#{steps u in M}+#{steps h in M}y#{steps u in M}x|M|.

The continued fraction follows now from [10]. Alternatively, we can use again the standard
decomposition of Motzkin paths, for k > 1. In the first of the above cases, the height of
hM1 is the same as the height of M1. However, in the second case, in order for the height
of uM2dM3 to be less than k, the height of M2 has to be less than k − 1. So we obtain the
equation

Bk(v, y, x)= 1+ vxBk(v, y, x)+ vyx2Bk−1(v, y, x)Bk(v, y, x).

For k=1, the path can have only horizontal steps, so we get B1(v, y, x)= 1
1−vx

. Now, using
the above recurrence and Eq. (1) we get the desired result. �

2.3. Fixed points in the reversal of Motzkin permutations

Here we show another application of �. A slight modification of it will allow us to
enumerate fixed points in another class of pattern-avoiding permutations closely related to
Motzkin permutations. For any �=�1�2 . . . �n ∈ Sn, denote its reversal by �R=�n . . . �2�1.
Let MR

n := {� ∈ Sn : �R ∈Mn}. In terms of pattern avoidance, MR
n is the set of permuta-

tions that avoid 231 and 32-1 simultaneously, that is, the set of 231-avoiding permutations
� ∈ Sn where there do not exist a < b such that �a−1 > �a > �b. Recall that i is called a
fixed point of � if �i = i.

Theorem 4. The generating function
∑

n�0
∑

�∈MR
n

wfp(�)xn for permutations avoiding
simultaneously 231 and 32-1 with respect to the number of fixed points is

1

1− wx − x2

1− x −M0(w − 1)x2 − x2

1− x −M1(w − 1)x3 − x2

1−x−M2(w−1)x4− x2

...

,

(4)

where after the second level, the coefficient of (w − 1)xn+2 is the Motzkin number Mn.

Proof. We have the following composition of bijections:

MR
n ←→ Mn ←→ En ←→ Mn

� �→ �R �→ �(�R) �→ �(�R)

The idea of the proof is to look at how the fixed points of � are transformed by each of these
bijections.
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We use the definition of tunnel of a Dyck path given in [7], and generalize it to Motzkin
paths. A tunnel of M ∈M (resp. D ∈ D) is a horizontal segment between two lattice points
of the path that intersects M (resp. D) only in these two points, and stays always below the
path. Tunnels are in obvious one-to-one correspondence with decompositions of the path
as M =XuYdZ (resp. D=XuYdZ), where Y ∈M (resp. Y ∈ D). In the decomposition,
the tunnel is the segment that goes from the beginning of the u to the end of the d. Clearly,
such a decomposition can be given for each up-step u, so the number of tunnels of a path
equals its number of up-steps. The length of a tunnel is just its length as a segment, and the
height is the y-coordinate of the segment.

Fixed points of� are mapped by the reversal operation to elements j such that�R
j =n+1−j ,

which in the array of �R correspond to crosses on the diagonal between the bottom-left and
top-right corners. Each cross in this array naturally corresponds to a tunnel of the Dyck path
�(�R), namely the one determined by the vertical step in the same row as the cross and the
horizontal step in the same column as the cross. It is not hard to see (and is also shown in
[8]) that crosses on the diagonal between the bottom-left and top-right corners correspond
in the Dyck path to tunnels T satisfying the condition height(T )+ 1= 1

2 length(T ).
The next step is to see how these tunnels are transformed by the bijection from En to

Mn. Tunnels of height 0 and length 2 in the Dyck path D := �(�R) are just hills ud landing
on the x-axis. By rule (2) they are mapped to horizontal steps at height 0 in the Motzkin
path M := �(�R). Assume now that k�1. A tunnel T of height k and length 2(k + 1) in
D corresponds to a decomposition D = XuYdZ where X ends at height k and Y ∈ D2k .
Note that Y has to begin with an up-step (since it is a nonempty Dyck path) followed by
a down-step, otherwise D would have a triple rise. Thus, we can write D = XuudY ′dZ

where Y ′ ∈ D2(k−1). When we apply to D the bijection given by rule (2), X is mapped to an
initial segment X̃ of a Motzkin path ending at height k, uud is mapped to u, Y ′ is mapped
to a Motzkin path Ỹ ′ ∈Mk−1 of length k − 1, the d following Y ′ is mapped to d (since it
is preceded by another d), and Z is mapped to a final segment Z̃ of a Motzkin path going
from height k to the x-axis. Thus, we have that M = X̃uỸ ′dZ̃. It follows that tunnels T of D
satisfying height(T )+1= 1

2 length(T ) are transformed by the bijection into tunnels T̃ of M
satisfying height(T̃ )+ 1= length(T̃ ). We will call good tunnels the tunnels of M satisfying
this last condition. It remains to show that the generating function for Motzkin paths where
w marks the number of good tunnels plus the number of horizontal steps at height 0, and x
marks the length of the path, is given by (4).

To do this we imitate the technique used in [8] to enumerate fixed points in 231-avoiding
permutations. We will separate good tunnels according to their height. It is important to
notice that if a good tunnel of M corresponds to a decomposition M =XuYdZ, then M has
no good tunnels inside the part given by Y. In other words, the orthogonal projections on
the x-axis of all the good tunnels of a given Motzkin path are disjoint. Clearly, they are also
disjoint from horizontal steps at height 0. Using this observation, one can apply directly the
results in [10] to give a continued fraction expression for our generating function. However,
for the sake of completeness we will explain here how to obtain this expression.

For every k�1, let gtk(M) be the number of tunnels of M of height k and length k+1. Let
hor(M) be the number of horizontal steps at height 0. We have seen that for � ∈MR

n , fp(�)=
hor(�(�R)) +∑

k �1 gtk(�(�R)). We will show now that for every k�1, the generating
function for Motzkin paths where w marks the statistic hor(M)+gt1(M)+· · ·+gtk−1(M)
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is given by the continued fraction (4) truncated at level k, with the (k + 1)st level replaced
with M(x).

A Motzkin path M can be written uniquely as a sequence of horizontal steps h and
elevated Motzkin paths uM ′d , where M ′ ∈M. In terms of the generating function M(x)=∑

M∈M x|M|, this translates into the equation M(x)= 1
1−x−x2M(x)

. The generating function
where w marks horizontal steps at height 0 is just

∑
M∈M

whor(M)x|M| = 1

1− wx − x2M(x)
.

If we want w to mark also good tunnels at height 1, each M ′ from the elevated paths above
has to be decomposed as a sequence of horizontal steps and elevated Motzkin paths uM ′′d.
In this decomposition, a tunnel of height 1 and length 2 is produced by each empty M ′′, so
we have

∑
M∈M

whor(M)+gt1(M)x|M| = 1

1− wx − x2

1− x − x2[w − 1+M(x)]
. (5)

Indeed, the M0(=1) possible empty paths M ′′ have to be accounted as w, not as 1.
Let us now enumerate simultaneously horizontal steps at height 0 and good tunnels at

heights 1 and 2. We can rewrite (5) as

1

1− wx − x2

1− x − x2

[
w − 1+ 1

1− x − x2M(x)

] .

Combinatorially, this corresponds to expressing each M ′′ as a sequence of horizontal steps
and elevated paths uM ′′′d , where M ′′′ ∈ M. Notice that since uM ′′′d starts at height 2,
a tunnel of height 2 and length 3 is created whenever M ′′′ ∈ M1. Thus, if we want w to
mark also these tunnels, such an M ′′′ has to be accounted as wx, not x. The corresponding
generating function is

∑
M∈M

whor(M)+gt1(M)+gt2(M)x|M|

= 1

1− wx − x2

1− x − x2

[
w − 1+ 1

1− x − x2[(w − 1)x +M(x)]
] .

Now it is clear how iterating this process indefinitely we obtain the continued fraction (4).
From the generating function where w marks hor(M) + gt1(M) + · · · + gtk(M), we can
obtain the one where w marks hor(M)+ gt1(M)+ · · · + gtk+1(M) by replacing the M(x)
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at the lowest level with

1

1− x − x2[Mk(w − 1)xk +M(x)] ,

to account for tunnels of height k and length k+ 1, which in the decomposition correspond
to elevated Motzkin paths at height k. �

3. Restricted Motzkin permutations

In this section we consider those Motzkin permutations in Mn that avoid an arbitrary
pattern �. More generally, we enumerate Motzkin permutations according to the number
of occurrences of �. Section 3.1 deals with the increasing pattern � = 12 . . . k. In Section
3.2 we show that if � has a certain form, we can express the generating function for �-
avoiding Motzkin permutations in terms of the corresponding generating functions for some
subpatterns of �. Finally, Section 3.3 studies the case of the generalized patterns 12-3- . . . -k
and 21-3- . . . -k.

We begin by introducing some notation. Let M�(n) be the number of Motzkin permuta-
tions inMn(�), and let N�(x)=∑

n�0 M�(n)xn be the corresponding generating function.
Let � ∈Mn. Using the block decomposition approach (see [22]), we have two possible

block decompositions of �, as shown in Fig. 2. These decompositions are described in
Lemma 5, which is the basis for all the results in this section.

Lemma 5. Let � ∈Mn. Then one of the following holds:

(i) �= (n, �) where � ∈Mn−1,
(ii) there exists t, 2� t �n, such that �= (�, n− t + 1, n, �), where

(�1 − (n− t + 1), . . . , �t−2 − (n− t + 1)) ∈Mt−2 and � ∈Mn−t .

Proof. Given � ∈ Mn, take j so that �j = n. Then � = (�′, n, �′′), and the condition that
� avoids 132 is equivalent to �′ being a permutation of the numbers n − j + 1, n − j +
2, . . . , n − 1, �′′ being a permutation of the numbers 1, 2, . . . , n − j , and both �′ and �′′
being 132-avoiding. On the other hand, it is easy to see that if �′ is nonempty, then � avoids
1-23 if and only if the minimal entry of �′ is adjacent to n, and both �′ and �′′ avoid 1-23.
Therefore, � avoids 132 and 1-23 if and only if either (i) or (ii) holds. �

β

n

n

n-t+1

α

β

Fig. 2. The block decomposition for � ∈Mn.
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3.1. The pattern �= 12 . . . k

From Theorem 3 we get the following expression for N�:

N12...k(x)= Uk−2((1− x)/2x)

xUk−1((1− x)/2x)
.

This result can also be easily proved using the block decomposition given in Lemma 5. Now
we turn our attention to analogues of [3, Theorem 1]. Let N(x1, x2, . . .) be the generating
function∑

n�0

∑
�∈Mn

∏
j �1

x
12...j (�)
j ,

where 12 . . . j (�) is the number of occurrences of the pattern 12 . . . j in �.

Theorem 6. The generating function
∑

n�0
∑

�∈Mn

∏
j �1 x

12...j
j (�) is given by the fol-

lowing continued fraction:

1

1− x1 − x2
1x2

1− x1x2 − x2
1x3

2x3

1− x1x
2
2x3 − x2

1x5
2x4

3x4

. . .

,

where the nth numerator is
∏n+1

i=1 x
(

n
i−1 )+(

n−1
i−1 )

i where the nth denominator is
∏n

i=1 x
(

n−1
i−1 )

i .

Proof. By Lemma 5, we have two possibilities for the block decomposition of an arbitrary
Motzkin permutation � ∈ Mn. Let us write an equation for N(x1, x2, . . .). The contri-
bution of the first decomposition is x1N(x1, x2, . . .), and the second decomposition gives
x2

1x2N(x1x2, x2x3, . . .)N(x1, x2, . . .). Therefore,

N(x1, x2, . . .)= 1+ x1N(x1, x2, . . .)+ x2
1x2N(x1x2, x2x3, . . .)N(x1, x2, . . .),

where 1 is the contribution of the empty Motzkin permutation. The theorem follows now
by induction. �

3.1.1. Counting occurrences of the pattern 12 . . . k in a Motzkin permutation
Using Theorem 6 we can enumerate occurrences of the pattern 12 . . . k in Motzkin

permutations.

Theorem 7. Fix k�2. The generating function for the number of Motzkin permutations
which contain 12 . . . k exactly r times is given by

(Uk−2((1− x)/2x)− xUk−3((1− x)/2x))r−1

Ur+1
k−1 ((1− x)/2x)

,

for all r = 1, 2, . . . , k.
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Proof. Let x1=x, xk=y, and xj =1 for all j �= 1, k. Let Gk(x, y) be the function obtained
from N(x1, x2, . . .) after this substitution. Theorem 6 gives

Gk(x, y)= 1

1− x − x2

1− x − x2

. . . −
. . .

1− x − x2y

1− xy − x2yk+1

. . .

.

So, Gk(x, y) can be expressed as follows. For all k�2,

Gk(x, y)= 1

1− x − x2Gk−1(x, y)
,

and there exists a continued fraction H(x, y) such that G1(x, y)= y

1−xy−yk+1H(x,y)
. Now,

using induction on k together with (1) we get that there exists a formal power series J (x, y)

such that

Gk(x, y)

= Uk−2((1− x)/2x)− (Uk−3((1− x)/2x)− xUk−4((1− x)/2x))y

xUk−1((1− x)/2x)− x(Uk−2((1− x)/2x)− xUk−3((1− x)/2x))y

+ yk+1J (x, y).

The series expansion of Gk(x, y) about the point y = 0 gives

Gk(x, y)=
[
Uk−2

(
1− x

2x

)
−

(
Uk−3

(
1− x

2x

)
− xUk−4

(
1− x

2x

))
y

]

×
∑
r �0

(Uk−2((1− x)/2x)− xUk−3((1− x)/2x))r

xUr+1
k−1((1− x)/2x)

yr + yk+1J (x, y).

Hence, by using the identities

U2
k (t)− Uk−1(t)Uk+1(t)= 1 and Uk(t)Uk−1(t)− Uk−2(t)Uk+1(t)= 2t

we get the desired result. �

3.1.2. More statistics on Motzkin permutations
We can use the above theorem to find the generating function for the number of Motzkin

permutations with respect to various statistics.
For another application of Theorem 6, recall that i is a free rise of � if there exists j such

that �i < �j . We denote the number of free rises of � by f r(�). Using Theorem 6 for x1=x,
x2 = q, and xj = 1 for j �3, we get the following result.
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Corollary 8. The generating function
∑

n�0
∑

�∈Mn
xnqf r(�) is given by the following

continued fraction:

1

1− x − x2q

1− xq − x2q3

1− xq2 − x2q5

. . .

,

where the nth numerator is x2q2n−1 and the nth denominator is xqn−1.

For our next application, recall that �j is a left-to-right maximum of a permutation � if
�i < �j for all i < j . We denote the number of left-to-right maxima of � by lrm(�).

Corollary 9. The generating function
∑

n�0
∑

�∈Mn
xnq lrm(�) is given by the following

continued fraction:

1

1− xq − x2q

1− x − x2

1− x − x2

. . .

.

Moreover,∑
n�0

∑
�∈Mn

xnq lrm(�) =
∑
m�0

xm(1+ xM(x))mqm.

Proof. Using Theorem 6 for x1 = xq, and x2j = x−1
2j+1 = q−1 for j �1, together with [3,

Proposition 5], we get the first equation as claimed. The second equation follows from the
fact that the continued fraction

1

1− x − x2

1− x − x2

. . .

is given by the generating function for the Motzkin numbers, namely M(x). �

3.2. General restriction

Let us find the generating function for those Motzkin permutations which avoid � in terms
of the generating function for Motzkin permutations avoiding �, where � is a permutation
obtained by removing some entries from �. The next theorem is analogous to the result for
123-avoiding permutations that appears in [14, Theorem 9].
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Theorem 10. Let k�4, �=(�′, 1, k) ∈Mk , and let � ∈Mk−2 be the permutation obtained
by decreasing each entry of �′ by 1. Then

N�(x)= 1

1− x − x2N�(x)
.

Proof. By Lemma 5, we have two possibilities for the block decomposition of a nonempty
Motzkin permutation in Mn. Let us write an equation for N�(x). The contribution of the
first decomposition is xN�(x), and from the second decomposition we get x2N�(x)N�(x).
Hence,

N�(x)= 1+ xN�(x)+ x2N�(x)N�(x),

where 1 corresponds to the empty Motzkin permutation. Solving the above equation we get
the desired result. �

As an extension of [14, Theorem 9], let us consider the case � = 23 . . . (k − 1)1k.
Theorem 10 for �= 23 . . . (k − 1)1k (�= 12 . . . (k − 2)) gives

N23...(k−1)1k(x)= 1

1− x − x2N12...(k−2)(x)
.

Hence, by Theorem 3 together with (1) we get

N23...(k−1)1k(x)= Uk−3((1− x)/2x)

xUk−2((1− x)/2x)
.

Corollary 11. For all k�1,

Nk(k+1)(k−1)(k+2)(k−2)(k+3)...1(2k)(x)= Uk−1((1− x)/2x)

xUk((1− x)/2x)

and

N(k+1)k(k+2)(k−1)(k+3)...1(2k+1)(x)= Uk((1− x)/2x)+ Uk−1((1− x)/2x)

x(Uk+1((1− x)/2x)+ Uk((1− x)/2x))
.

Proof. Theorem 10 for �= k(k + 1)(k − 1)(k + 2)(k − 2)(k + 3) . . . 1(2k) gives

N�(x)= 1

1− x − x2N(k−1)k(k−2)(k+1)(k−3)(k+2)...1(2k−2)(x)
.

Now we argue by induction on k, using (1) and the fact that N12(x) = 1
1−x

. Similarly, we
get the explicit formula for N(k+1)k(k+2)(k−1)(k+3)...1(2k+1)(x). �

Theorem 3 and Corollary 11 suggest that there should exist a bijection between the sets
Mn(12 . . . (k + 1)) and Mn(k(k + 1)(k − 1)(k + 2)(k − 2)(k + 3) . . . 1(2k)). Finding it
remains an interesting open question.



184 S. Elizalde, T. Mansour / Discrete Mathematics 305 (2005) 170–189

Theorem 12. Let �= (�′, t, k, �′, 1, t − 1) ∈ Mk such that �′a > t > �′b for all a, b. Let �
and � be the permutations obtained by decreasing each entry of �′ by t and decreasing each
entry of �′ by 1, respectively. Then

N�(x)= 1− x2N�(x)Ñ�(x)

1− x − x2(N�(x)+ Ñ�(x))
,

where Ñ�(x)= 1

1− x − x2N�(x)
.

Proof. By Lemma 5, we have two possibilities for block decomposition of a nonempty
Motzkin permutation � ∈Mn. Let us write an equation for N�(x). The contribution of the
first decomposition is xN�(x). The second decomposition contributes x2N�(x)N�(x) if �
avoids �, and x2(N�(x)−N�(x))Ñ�(x) if � contains �. This last case follows from Theorem
10, since if � contains �, � has to avoid (�, 1, t − 1). Hence,

N�(x)= 1+ xN�(x)+ x2N�(x)N�(x)+ x2(N�(x)−N�(x))Ñ�(x),

where 1 is the contribution of the empty Motzkin permutation. Solving the above equation
we get the desired result. �

For example, for �= 546 213 (�= �46�13), Theorem 12 gives N�(x)= 1−2x
(1−x)(1−2x−x2)

.
The last two theorems can be generalized as follows.

Theorem 13. Let �=(�1, t1+1, t0, �2, t2+1, t1, . . . , �m, tm+1, tm−1) where tj−1 > �j
a > tj

for all a and j. We define 	j = (�1, t1 + 1, t0, . . . , �j ) for j = 2, . . . , m, 	0 = ∅, and
�j = (�j , tj + 1, tj−1, . . . , �m, tm + 1, tm−1) for j = 1, 2, . . . , m. Then

N�(x)= 1+ xN�(x)+ x2
m∑

j=1

(N	j (x)−N	j−1)N�j (x).

(By convention, if � is a permutation of {i + 1, i + 2, . . . , i + l}, then N� is defined as N�′ ,
where �′ is obtained from � decreasing each entry by i.)

Proof. By Lemma 5, we have two possibilities for block decomposition of a nonempty
Motzkin permutation � ∈ Mn. Let us write an equation for N�(x). The contribution of
the first decomposition is xN�(x). The second decomposition contributes x2(N	j (x) −
N	j−1(x))N�j (x) if � avoids 	j and contains 	j−1 (which happens exactly for one value of

j), because in this case�must avoid�j . Therefore, adding all the possibilities of contributions
with the contribution 1 for the empty Motzkin permutation we get the desired result. �

For example, this theorem can be used to obtain the following result.

Corollary 14. (i) For all k�3

N(k−1)k12...(k−2)(x)= Uk−3((1− x)/2x)

xUk−2((1− x)/2x)
.
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(ii) For all k�4

N(k−1)(k−2)k12...(k−3)(x)= Uk−4((1− x)/2x)− xUk−5((1− x)/2x)

x(Uk−3((1− x)/2x)− xUk−4((1− x)/2x))
.

(iii) For all 1� t �k − 3,

N(t+2)(t+3)...(k−1)(t+1)k12...t (x)= Uk−4((1− x)/2x)

xUk−3((1− x)/2x)
.

3.3. Generalized patterns

In this section we consider the case of generalized patterns (see Section 1.1), and we
study some statistics on Motzkin permutations.

3.3.1. Counting occurrences of the generalized patterns 12-3- . . . -k and 21-3- . . . -k
Let F(t, X, Y )= F(t, x2, x3, . . . , y2, y3, . . .) be the generating function∑

n�0

∑
�∈Mn

tn
∏
j �2

x
12-3-...-j (�)
j y

21-3-...-j (�)
j ,

where 12-3- . . . -j (�) and 21-3- . . . -j (�) are the number of occurrences of the pattern
12-3- . . . -j and 21-3- . . . -j in �, respectively.

Theorem 15. We have

F(t, X, Y )= 1− t

ty2 −
1

1+ tx2(1− y2y3)+ tx2y2y3F(t, X′, Y ′)

,

where X′ = (x2x3, x3x4, . . .) and Y ′ = (y2y3, y3y4, . . .). In other words, the generating
function F(t, x2, x3, . . . , y2, y3, . . .) is given by the continued fraction

1− t

ty2−
1

1+tx2− t2x2y2y3

ty2y3− 1

1+tx2x3− t2x2x3y2y
2
3y4

ty2y
2
3y4− 1

1+tx2x
2
3x4− t2x2x

2
3x4y2y

3
3y3

4y5

. . .

.

Proof. As usual, we consider the two possible block decompositions of a nonempty
Motzkin permutation � ∈ Mn. Let us write an equation for F(t, X, Y ). The contribution
of the first decomposition is t + ty2(F (t, X, Y ) − 1). The contribution of the second
decomposition gives t2x2, t2x2y2(F (t, X, Y ) − 1), t2x2y2y3(F (t, X′, Y ′) − 1), and
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t2x2y
2
2y3(F (t, X, Y )−1)(F (t, X′, Y ′)−1) for the four possibilities (see Fig. 2) �=�=∅,

�= ∅ �= �, �= ∅ �= �, and �, � �= ∅, respectively. Hence,

F(t, X, Y )= 1+ t + ty2(F (t, X, Y )− 1)+ t2x2 + t2x2y2y3(F (t, X′Y ′)− 1)

+ t2x2y2(F (t, X, Y )− 1)+ t2x2y
2
2y3(F (t, X, Y )− 1)

× (F (t, X′, Y ′)− 1),

where 1 is as usual the contribution of the empty Motzkin permutation. Simplifying the
above equation we get

F(t, X, Y )= 1− t

ty2 −
1

1+ tx2(1− y2y3)+ tx2y2y3F(t, X′, Y ′)

.

The second part of the theorem now follows by induction. �

As a corollary of Theorem 15 we recover the distribution of the number of rises and
number of descents on the set of Motzkin permutations, which also follows easily from
Theorem 2.

Corollary 16. We have

∑
n�0

∑
�∈Mn

tnp#{rises in �}q#{descents in �}

= 1− qt − 2pq(1− q)t2 −
√

(1− qt)2 − 4pqt2

2pq2t2 .

As an application of Theorem 15 let us consider the case of Motzkin permutations which
contain either 12-3- . . . -k or 21-3- . . . -k exactly r times.

Theorem 17. Fix k�2. Let N12-3-...-k(x; r) be the generating function for the number of
Motzkin permutations which contain 12-3- . . . -k exactly r times. Then

N12-3-...-k(x; 0)= Uk−1((1− x)/2x)

xUk((1− x)/2x)
,

and for all r = 1, 2, . . . , k − 1,

N12-3-...-k(x; r)=
xr−1Ur−1

k−2 ((1− x)/2x)

(1− x)rUr+1
k−1 ((1− x)/2x)

.
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Proof. Let t = x, xk = y, xj = 1 for all j �= k, and yj = 1 for all j. Let G̃k(x, y) be the
function obtained from F(t, X, Y ) after this substitution. Theorem 15 gives

G̃k(x, y)

= 1− x

x − 1

1+ x − x2

1− x

1+ x − x2

. . . −
. . .

x − 1

1+ xy − x2y

x − 1

1+ xyk+1 − . . .

.

Therefore, G̃k(x, y) can be expressed as follows. For all k�2,

G̃k(x, y)= 1− x

x − 1

1+ xG̃k−1(x, y)

,

and there exists a continued fraction H̃ (x, y) such that

G̃1(x, y)= y − xy

x − 1

1+ xyk+1H̃ (x, y)

.

Now, using induction on k together with (1) we get that there exists a formal power series
J̃ (x, y) such that

G̃k(x, y)= (1− x)Uk−2((1− x)/2x)− xyUk−3((1− x)/2x)

x(1− x)Uk−1((1− x)/2x)− x2yUk−2((1− x)/2x)
+ yk+1J̃ (x, y).

Similarly as in the proof of Theorem 7, expanding G̃k(x, y) in series about the point y = 0
gives the desired result. �

Using the same idea as in Theorem 17, we can apply Theorem 15 to obtain the following
result.

Theorem 18. Fix k�2. Let N21-3-...-k(x; r) be the generating function for the number of
Motzkin permutations which contain 21-3- . . . -k exactly r times. Then

N21-3-...-k(x; 0)= Uk−3((1− x)/2x)− xUk−4((1− x)/2x)

x(Uk−2((1− x)/2x)− xUk−3((1− x)/2x))
,
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and for all r = 1, 2, . . . , k − 1,

N12-3-...-k(x; r)=
xr(1+ x)rUr−1

k−2 ((1− x)/2x)

(Uk−2((1− x)/2x)− xUk−3((1− x)/2x))r+1 .
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