13,958 research outputs found

    Development of a fiber optic high temperature strain sensor

    Get PDF
    From 1 Apr. 1991 to 31 Aug. 1992, the Georgia Tech Research Institute conducted a research program to develop a high temperature fiber optic strain sensor as part of a measurement program for the space shuttle booster rocket motor. The major objectives of this program were divided into four tasks. Under Task 1, the literature on high-temperature fiber optic strain sensors was reviewed. Task 2 addressed the design and fabrication of the strain sensor. Tests and calibration were conducted under Task 3, and Task 4 was to generate recommendations for a follow-on study of a distributed strain sensor. Task 4 was submitted to NASA as a separate proposal

    A Peripheral Subsystem Optimized for Computer Image Generation Applications

    Get PDF
    Requirements for ever increasing realism in real time computer image generation for military mission and commercial training, have generated the need for a higher performance, more cost effective front-end processor. Current computer image generators front-end general purpose computers are reaching their performance limits in current architectures. The tasks of this processor include: realtime computations, magnetic disk control, data transfer and direct memory access to and from the balance of the image generator. A new front-end processor system is under development. This multiple-bus, multiprocessor architecture in and of itself does not address disk and external data transfer. A peripheral subsystem is therefore researched to satisfy these requirements. Industry standard peripheral buses and protocols are evaluated. A peripheral subsystem, compatible with this new front-end processor architecture, is proposed. The Intelligent Peripheral Interface is selected as the optimum peripheral subsystem for computer image generation application. An abbreviated design specification for the proposed subsystem is presented. The subsystem performs magnetic disk control, data transfer and direct memory access to and from the balance of the computer image generator while not compromising front-end computational performance. It is capable of addressing new levels of performance. Several Intelligence Peripheral Interface issues, specific to this computer image generation application, are investigated

    The NASA Langley Research Center 0.3-meter transonic cryogenic tunnel T-P/Re-M controller manual

    Get PDF
    A new microcomputer based controller for the 0.3-m Transonic Cryogenic Tunnel (TCT) has been commissioned in 1988 and has reliably operated for more than a year. The tunnel stagnation pressure, gas stagnation temperature, tunnel wall structural temperature and flow Mach number are precisely controlled by the new controller in a stable manner. The tunnel control hardware, software, and the flow chart to assist in calibration of the sensors, actuators, and the controller real time functions are described. The software installation details are also presented. The report serves as the maintenance and trouble shooting manual for the 0.3-m TCT controller

    Spatial audio in small display screen devices

    Get PDF
    Our work addresses the problem of (visual) clutter in mobile device interfaces. The solution we propose involves the translation of technique-from the graphical to the audio domain-for expliting space in information representation. This article presents an illustrative example in the form of a spatialisedaudio progress bar. In usability tests, participants performed background monitoring tasks significantly more accurately using this spatialised audio (a compared with a conventional visual) progress bar. Moreover, their performance in a simultaneously running, visually demanding foreground task was significantly improved in the eye-free monitoring condition. These results have important implications for the design of multi-tasking interfaces for mobile devices

    The QUEST large area CCD camera

    Get PDF
    We have designed, constructed, and put into operation a very large area CCD camera that covers the field of view of the 1.2 m Samuel Oschin Schmidt Telescope at the Palomar Observatory. The camera consists of 112 CCDs arranged in a mosaic of four rows with 28 CCDs each. The CCDs are 600 x 2400 pixel Sarnoff thinned, back-illuminated devices with 13 µm x 13 µm pixels. The camera covers an area of 4.6° x 3.6° on the sky with an active area of 9.6 deg_2. This camera has been installed at the prime focus of the telescope and commissioned, and scientific-quality observations on the Palomar-QUEST Variability Sky Survey were started in 2003 September. The design considerations, construction features, and performance parameters of this camera are described in this paper

    Cockpit Ocular Recording System (CORS)

    Get PDF
    The overall goal was the development of a Cockpit Ocular Recording System (CORS). Four tasks were used: (1) the development of the system; (2) the experimentation and improvement of the system; (3) demonstrations of the working system; and (4) system documentation. Overall, the prototype represents a workable and flexibly designed CORS system. For the most part, the hardware use for the prototype system is off-the-shelf. All of the following software was developed specifically: (1) setup software that the user specifies the cockpit configuration and identifies possible areas in which the pilot will look; (2) sensing software which integrates the 60 Hz data from the oculometer and heat orientation sensing unit; (3) processing software which applies a spatiotemporal filter to the lookpoint data to determine fixation/dwell positions; (4) data recording output routines; and (5) playback software which allows the user to retrieve and analyze the data. Several experiments were performed to verify the system accuracy and quantify system deficiencies. These tests resulted in recommendations for any future system that might be constructed

    Alignment sensitivity of holographic three-dimensional disks

    Get PDF
    We describe the rotational alignment sensitivity of three-dimensional holographic disks. It is shown that the reconstructed image always rotates by the angle by which the disk rotates; however, the center and the radius of rotation change as the recording geometry changes. A comparison among image plane, Fourier plane, and Fresnel holograms is given, and an optimum configuration (in terms of alignment sensitivity) in which the radius of rotation is zero is derived. We present experimental results and also discuss how the rotation alignment sensitivity affects the storage density and the readout–recording speed of the three-dimensional disk. A brief summary of other sources of misalignment is given

    Telemetry downlink interfaces and level-zero processing

    Get PDF
    The technical areas being investigated are as follows: (1) processing of space to ground data frames; (2) parallel architecture performance studies; and (3) parallel programming techniques. Additionally, the University administrative details and the technical liaison between New Mexico State University and Goddard Space Flight Center are addressed
    • …
    corecore