2 research outputs found

    Analysis of Passive Magnetic Inspection Signals Using the Haar Wavelet and Asymmetric Gaussian Chirplet Model (AGCM)

    Get PDF
    Nowadays, Non-Destructive Testing (NDT) techniques are an essential foundation of infrastructure retrofit and rehabilitation plans, mainly due to the huge amount of construction, as well as the high cost of demolition and reconstruction. Modern NDT methods are moving toward automated detection methods to increase the speed and probability of detection, which enlarges the size of inspection data and raises the demand for new data analysis methods. NDT methods are divided into two main groups; active and passive. The external potentials are discharged into an object in an active method, and then the reflection wave is recorded. However, the passive methods use the self-created magnetic field of the object. Therefore, the magnetic value of ferromagnetic material in a passive method is less than the magnetic value of an active method, and defects and anomalies detection needs more variety of functional signal processing methods. The Passive Magnetic Inspection (PMI) method, as an NDT-passive technology, is used in this thesis for ferromagnetic materials quantitative assessment. The success of the PMI depends on the detection of anomalies of the passive magnetic signals, which is different for every single test. This research aims to develop appropriate signal processing methods to enhance the PMI quality of defect detection in ferromagnetic materials. This thesis has two main parts and presents two computer-based inspection data analysis methods based on the Haar wavelet and the Asymmetric Gaussian Chriplet Model (AGCM). The Passive Magnetic Inspection method (PMI) is used to scan ferromagnetic materials and produce the raw magnetic data analyzed by the Haar wavelet and AGCM. The first part of this study describes the Haar wavelet method for rebar defect detection. The Haar wavelet is used to analyze the PMI magnetic data of the embedded reinforcement steel rebar. The corrugated surface of reinforcing steel makes the detection of defects harder than in flat plates. The up and down shape of the Haar wavelet function can filter the repeating corrugations effect of steel rebars on the PMI signal and thereby better identify the defects. Toogood Pond Dam piers’ rebar defects, as a case study, were detected using the Haar wavelet analysis and verified by the Absolute Gradient (AG) method using visual comparison of the resultant signals and the correlation coefficient. The predicted number of points with a rebar area loss higher than 4% is generally the same with the AG and the Haar wavelet methods. The mean correlation coefficient between the signals analyzed using the AG and the Haar wavelet for all rebars is 0.8. In the second part of this study the use of the AGCM to simulate PMI signals is investigated. Three rail samples were scanned to extract a three-dimensional magnetic field along specific PMI transit lines of each sample for the AGCM simulations. Errors, defined as the absolute value of the difference between signal and simulation, were considered as a measure of simulation accuracy in each direction. The samples’ lengths differed, therefore error values were normalized with respect to the length to scale data for the three samples. The Simulation Error Factor (SEF) was used to measure the error and sample 3 showed the lower value. Finally, statistical properties of the samples' SEF, such as standard deviation and covariance, were evaluated, and the best distribution was fitted to each of the data sets based on the Probability Paper Plot (PPP) method. The Log-Normal probability distribution demonstrated the best compatibility with SEF values. These distributions and statistical properties help to detect outlier data for future data sets and to identify defects

    Aplicaciones de sensores vestibles y teléfonos inteligentes en el bienestar personal: Cuantificación de la actividad física y control de la práctica de mindfulness

    Get PDF
    El teléfono móvil inteligente (Smartphone) se ha convertido en un dispositivo con una amplia aceptación entre la población y ha logrado cambiar nuestras vidas en muchos aspectos. Sus aplicaciones van más allá de la simple comunicación, llegando a acuñarse en los últimos años el término “mHealth”, como referencia al uso de dispositivos móviles (en particular teléfonos), en el ámbito de la salud.En el ámbito de la salud, los teléfonos móviles pueden servir como: Elementos de aprendizaje y formación, a través de la visualización de texto, vídeos, audios, etc. Elementos de monitorización, a través de los propios sensores del móvil (geolocalización, sensores inerciales), de sensores que se conectan al móvil o mediante encuestas automatizadas. De una forma u otra, el teléfono inteligente aporta varias características, entre otras, la posibilidad de recopilar una gran cantidad de datos, muchas veces de forma ubicua y transparente al usuario. La posibilidad de extraer información relevante de esos datos es un gran campo de investigación, con fundamento en aspectos como sensores vestibles, reconocimiento de patrones y aprendizaje automático, “big data”, entre otros.La capacidad de monitorización de los teléfonos inteligentes se complementa con los sensores vestibles (wearable) no integrados en el propio teléfono inteligente, que en diversos formatos permiten la medida de variables físicas y fisiológicas. Generalmente suelen ser complementos, componentes que se sujetan a la ropa, sensores integrados directamente en los tejidos u otros. En muchas ocasiones se conectan a una aplicación móvil para tratar y visualizar los resultados.En esta tesis se realizan varias aportaciones en el campo de la salud móvil y sensores vestibles, dentro de las actividades realizadas en el grupo EduQTech (grupo de referencia reconocido por la DGA ref. T49_17R) (EduQTech, 2018). En concreto se plantea avanzar en dos aplicaciones para bienestar: la cuantificación de la actividad física y el control de la práctica de mindfulness.Cuantificación de la actividad física: Para cuantificar la actividad física se ha utilizado el acelerómetro de un smartphone de gama media-baja (acelerómetros con un rango normal de ± 2g), el cual registra los movimientos realizados por el usuario. Posteriormente se ha hecho un análisis de los datos (creación de algoritmos) y los resultados se han comparado con los resultados aportados por un acelerómetro comercial dedicado para medir la actividad física (GT3X+, acelerómetro con un rango normal de ± 6g). Las recomendaciones de actividad física se establecen en función de la salida del acelerómetro en unidades llamadas “counts”. Nuestros resultados demuestran que es factible el uso de los acelerómetros incorporados en los smartphones comerciales. Uno de los algoritmos obtuvo una correlación Kappa ponderada de 0.874 (p-valor Control de la práctica de mindfulness: Mindfulness es una técnica de intervención basada en la meditación budista y que ha demostrado ser eficiente tanto en el mantenimiento del bienestar físico y mental personal, como en el apoyo a pacientes para el tratamiento de distintas enfermedades. Su monitorización puede ayudar a los profesionales a evaluar la eficacia de la práctica y, en consecuencia, aumentar los beneficios esperados de la misma, especialmente en el ámbito de la salud. En esta tesis se han desarrollado dos prototipos: El primer kit fue desarrollado para medir la estabilidad de los meditadores durante sus sesiones de mindfulness. En dicho estudio participaron 31 sujetos, de los cuales 27 no tenían experiencia meditando. Los resultados mostraron que no hubo diferencias significativas con respecto a qué ubicación era la mejor para medir la estabilidad salvo la región lumbar, que es menos sensible. Sin embargo, sí que se pudo ver que la cabeza y el dedo pulgar fueron los más sensibles a los movimientos de los practicantes. Además, se comprobó que el zafú (cojín de meditación) presenta una ligera ventaja sobre otros asientos. La medición del ritmo cardíaco y su variabilidad son también de gran importancia. La variabilidad del ritmo cardíaco es un indicador general de salud y varios estudios han mostrado que puede haber cambios durante la meditación. El kit propuesto para medir la variabilidad se basó en un sensor Amped usando el método de fotopletismiografía. En este estudio se contó con la participación de 10 meditadores expertos y 20 noveles, en el cual el objetivo era ver si había diferencias significativas entre los dos grupos. Los resultados mostraron que en los parámetros de la variabilidad de la frecuencia cardiaca SDNN, NN50, RMSSD, VLF y HF hay diferencias significativas con un p-valor <br /
    corecore