13,685 research outputs found

    Coalgebraic completeness-via-canonicity for distributive substructural logics

    Get PDF
    We prove strong completeness of a range of substructural logics with respect to a natural poset-based relational semantics using a coalgebraic version of completeness-via-canonicity. By formalizing the problem in the language of coalgebraic logics, we develop a modular theory which covers a wide variety of different logics under a single framework, and lends itself to further extensions. Moreover, we believe that the coalgebraic framework provides a systematic and principled way to study the relationship between resource models on the semantics side, and substructural logics on the syntactic side.Comment: 36 page

    An Autonomous Engine for Services Configuration and Deployment.

    Full text link
    The runtime management of the infrastructure providing service-based systems is a complex task, up to the point where manual operation struggles to be cost effective. As the functionality is provided by a set of dynamically composed distributed services, in order to achieve a management objective multiple operations have to be applied over the distributed elements of the managed infrastructure. Moreover, the manager must cope with the highly heterogeneous characteristics and management interfaces of the runtime resources. With this in mind, this paper proposes to support the configuration and deployment of services with an automated closed control loop. The automation is enabled by the definition of a generic information model, which captures all the information relevant to the management of the services with the same abstractions, describing the runtime elements, service dependencies, and business objectives. On top of that, a technique based on satisfiability is described which automatically diagnoses the state of the managed environment and obtains the required changes for correcting it (e.g., installation, service binding, update, or configuration). The results from a set of case studies extracted from the banking domain are provided to validate the feasibility of this propos

    Models for robust resource allocation in project scheduling.

    Get PDF
    The vast majority of resource-constrained project scheduling efforts assumes complete information about the scheduling problem to be solved and a static deterministic environment within which the pre-computed baseline schedule will be executed. In reality, however, project activities are subject to considerable uncertainty which generally leads to numerous schedule disruptions. In this paper, we present a resource allocation model that protects the makespan of a given baseline schedule against activity duration variability. A branch-and-bound algorithm is developed that solves the proposed robust resource allocation problem in exact and approximate formulations. The procedure relies on constraint propagation during its search. We report on computational results obtained on a set of benchmark problems.Model; Resource allocation; Scheduling;
    corecore