2 research outputs found

    Data-Centric Edge Federation: A Multi-Edge Architecture for Data Stream Processing of IoT Applications

    Get PDF
    Emerging Internet of Things (IoT) applications demand data stream processing with low latency and high processing power. Although the cloud naturally provides huge processing capacity, high latency to move data to the datacenter is prohibitive. Edge computing is a recent paradigm where part of computing and storage resources are pushed from the cloud to the edge of the network. In edge computing, edge providers manage their resources near to IoT devices to meet low latency application requirements and reduce the network core bandwidth. To reach the maximum potential of edge computing, a big challenge is to promote the cooperation between edge providers. Currently, edge computing architectures are severely limited for providing cooperation mechanisms between distinct edge providers. In this paper, we propose a edge federation to leverage the cooperation between different edge providers. The edge federation uses interest information propagated in data streams that travel between edge providers to allow an stakeholder to react to inefficient resource allocation and service provision. The main objective of the federation is to create a consortium of edge providers to provide cooperation mechanisms and define and standardize the application interests. The proposed edge federation is (i) data-centric, since edge providers can share common interests and data and, thus, establish cooperation to increase the capacity to provide services for applications; (ii) distributed, since no assumption is made concerning the geo-location of the edge providers and their logical connections; (iii) opportunistic, because an edge provider can react dynamically to the environment change ; (iv) scalable, since the edge provider has the ability to analyze a data flow passing by its infrastructure and make decisions to increase network performance locally, which impacts the global performanc

    Resource provisioning towards OPEX optimization in horizontal edge federation

    No full text
    [[abstract]]Energy consumption is a key performance metric in multi-access edge computing (MEC) system. Therefore, minimizing consumed energy cost is critically essential. The 5G networks deal with edge computing resources so that the operator would face with power supply limitation. Therefore, it may not be able to provide sufficient resources to ever-increasing user’s requests. One way to compensate such limitation is to form horizontal edge federation (HEF) so that all participant can share the resource capacities as well as request workloads. Energy efficient and ultra-low latency HEF involves the setting of critical factor in each participant: offloading ratios. The decided offloading ratios must provide satisfactory service level to meet latency and physical resource types capacity constraints demanded by requests. Our proposed problem is an energy efficient operational cost (e-OPEX) optimization problem. In this paper, we formulate it as a mixed integer linear program and demonstrate that the problem is NP-hard and proposed a federated multidimensional fractional knapsack based algorithm (FMFK) as our approach. The result shows that the horizontal edge federation based on the FMFK performs better and saves the more e-OPEX as well as serving more input requests compare with the non-federation approach. The experimental results show that our approach save about 40% of e-OPEX specially for high latency sensitive application requests in hotspot zone. It shows around 50% e-OPEX saving in the case of high computation unit cost compare with non-federation approach
    corecore