35,528 research outputs found

    Routing Games with Progressive Filling

    Full text link
    Max-min fairness (MMF) is a widely known approach to a fair allocation of bandwidth to each of the users in a network. This allocation can be computed by uniformly raising the bandwidths of all users without violating capacity constraints. We consider an extension of these allocations by raising the bandwidth with arbitrary and not necessarily uniform time-depending velocities (allocation rates). These allocations are used in a game-theoretic context for routing choices, which we formalize in progressive filling games (PFGs). We present a variety of results for equilibria in PFGs. We show that these games possess pure Nash and strong equilibria. While computation in general is NP-hard, there are polynomial-time algorithms for prominent classes of Max-Min-Fair Games (MMFG), including the case when all users have the same source-destination pair. We characterize prices of anarchy and stability for pure Nash and strong equilibria in PFGs and MMFGs when players have different or the same source-destination pairs. In addition, we show that when a designer can adjust allocation rates, it is possible to design games with optimal strong equilibria. Some initial results on polynomial-time algorithms in this direction are also derived

    Cost sharing of cooperating queues in a Jackson network

    Get PDF
    We consider networks of queues in which the independent operators of individual queues may cooperate to reduce the amount of waiting. More specifically, we focus on Jackson networks in which the total capacity of the servers can be redistributed over all queues in any desired way. If we associate a cost to waiting that is linear in the queue lengths, it is known how the operators should share the available service capacity to minimize the long run total cost. We answer the question whether or not (the operators of) the individual queues will indeed cooperate in this way, and if so, how they will share the cost in the new situation. One of the results is an explicit cost allocation that is beneficial for all operators. The approach used also works for other cost functions, such as the server utilization

    Market-Based Task Allocation Mechanisms for Limited Capacity Suppliers

    No full text
    This paper reports on the design and comparison of two economically-inspired mechanisms for task allocation in environments where sellers have finite production capacities and a cost structure composed of a fixed overhead cost and a constant marginal cost. Such mechanisms are required when a system consists of multiple self-interested stakeholders that each possess private information that is relevant to solving a system-wide problem. Against this background, we first develop a computationally tractable centralised mechanism that finds the set of producers that have the lowest total cost in providing a certain demand (i.e. it is efficient). We achieve this by extending the standard Vickrey-Clarke-Groves mechanism to allow for multi-attribute bids and by introducing a novel penalty scheme such that producers are incentivised to truthfully report their capacities and their costs. Furthermore our extended mechanism is able to handle sellers' uncertainty about their production capacity and ensures that individual agents find it profitable to participate in the mechanism. However, since this first mechanism is centralised, we also develop a complementary decentralised mechanism based around the continuous double auction. Again because of the characteristics of our domain, we need to extend the standard form of this protocol by introducing a novel clearing rule based around an order book. With this modified protocol, we empirically demonstrate (with simple trading strategies) that the mechanism achieves high efficiency. In particular, despite this simplicity, the traders can still derive a profit from the market which makes our mechanism attractive since these results are a likely lower bound on their expected returns

    Weighted Congestion Games With Separable Preferences

    Get PDF
    Players in a congestion game may differ from one another in their intrinsic preferences (e.g., the benefit they get from using a specific resource), their contribution to congestion, or both. In many cases of interest, intrinsic preferences and the negative effect of congestion are (additively or multiplicatively) separable. This paper considers the implications of separability for the existence of pure-strategy Nash equilibrium and the prospects of spontaneous convergence to equilibrium. It is shown that these properties may or may not be guaranteed, depending on the exact nature of player heterogeneity.congestion games, separable preferences, pure equilibrium, finite improvement property, potential.
    corecore