16,210 research outputs found

    Design of VLC and heterogeneous RF/VLC systems for future generation networks: an algorithmic approach

    Get PDF
    Visible light communication (VLC) has attracted significant research interest within the last decade due in part to the vast amount of unused transmission bandwidth in the visible light spectrum. VLC is expected to be part of future generation networks. The heterogeneous integration of radio frequency (RF) and VLC systems has been envisioned as a promising solution to increase the capacity of wireless networks, especially in indoor environments. However, the promised advantages of VLC and heterogeneous RF/VLC systems cannot be realized without proper resource management algorithms that exploit the distinguishing characteristics between RF and VLC systems. Further, the problem of backhauling for VLC systems has received little attention. This dissertation’s first part focuses on designing and optimizing VLC and heterogeneous RF/VLC systems. Novel resource allocation algorithms that optimize the sum-rate and energy efficiency performances of VLC, hybrid, and aggregated RF/VLC systems while considering practical constraints like illumination requirements, inter-cell interference, quality-of-service requirements, and transmit power budgets are proposed. Moreover, a power line communicationbased backhaul solution for an indoor VLC system is developed, and a backhaul-aware resource allocation algorithm is proposed. These algorithms are developed by leveraging tools from fractional programming (i.e., Dinkelbach’s transform and quadratic transform), the multiplier adjustment method, matching theory, and multi-objective optimization. The latter part of this dissertation examines the adoption of emerging beyond 5G technologies, such as intelligent reflecting surfaces (IRSs) and reconfigurable intelligent surfaces (RISs), to overcome the limitations of VLC systems and boost their performance gains. Novel system models for IRSs-aided and RISs-aided VLC systems are proposed, and metaheuristic-based algorithms are developed to optimize the configurations of the IRSs/RISs and, consequently, the performance of VLC systems. Extensive simulations reveal that the proposed resource allocation schemes outperform the considered benchmarks and provide performance close to the optimal solution. Furthermore, the proposed system models achieve superior performance compared to benchmark system models

    Improvement of indoor VLC network downlink scheduling and resource allocation

    Get PDF
    Indoor visible light communications (VLC) combines illumination and communication by utilizing the high-modulation-speed of LEDs. VLC is anticipated to be complementary to radio frequency communications and an important part of next generation heterogeneous networks. In order to make the maximum use of VLC technology in a networking environment, we need to expand existing research from studies of traditional point-to-point links to encompass scheduling and resource allocation related to multi-user scenarios. This work aims to maximize the downlink throughput of an indoor VLC network, while taking both user fairness and time latency into consideration. Inter-user interference is eliminated by appropriately allocating LEDs to users with the aid of graph theory. A three-term priority factor model is derived and is shown to improve the throughput performance of the network scheduling scheme over those previously reported. Simulations of VLC downlink scheduling have been performed under proportional fairness scheduling principles where our newly formulated priority factor model has been applied. The downlink throughput is improved by 19.6% compared to previous two-term priority models, while achieving similar fairness and latency performance. When the number of users grows larger, the three-term priority model indicates an improvement in Fairness performance compared to two-term priority model scheduling

    Non-Orthogonal Multiple Access for Hybrid VLC-RF Networks with Imperfect Channel State Information

    Get PDF
    The present contribution proposes a general framework for the energy efficiency analysis of a hybrid visible light communication (VLC) and Radio Frequency (RF) wireless system, in which both VLC and RF subsystems utilize nonorthogonal multiple access (NOMA) technology. The proposed framework is based on realistic communication scenarios as it takes into account the mobility of users, and assumes imperfect channel-state information (CSI). In this context, tractable closed-form expressions are derived for the corresponding average sum rate of NOMA-VLC and its orthogonal frequency division multiple access (OFDMA)-VLC counterparts. It is shown extensively that incurred CSI errors have a considerable impact on the average energy efficiency of both NOMA-VLC and OFDMAVLC systems and hence, they should not be neglected in practical designs and deployments. Interestingly, we further demonstrate that the average energy efficiency of the hybrid NOMA-VLCRF system outperforms NOMA-VLC system under imperfect CSI. Respective computer simulations corroborate the derived analytic results and interesting theoretical and practical insights are provided, which will be useful in the effective design and deployment of conventional VLC and hybrid VLC-RF systems
    • …
    corecore