226 research outputs found

    Resource Allocation for Network-Integrated Device-to-Device Communications Using Smart Relays

    Full text link
    With increasing number of autonomous heterogeneous devices in future mobile networks, an efficient resource allocation scheme is required to maximize network throughput and achieve higher spectral efficiency. In this paper, performance of network-integrated device-to-device (D2D) communication is investigated where D2D traffic is carried through relay nodes. An optimization problem is formulated for allocating radio resources to maximize end-to-end rate as well as conversing QoS requirements for cellular and D2D user equipment under total power constraint. Numerical results show that there is a distance threshold beyond which relay-assisted D2D communication significantly improves network performance when compared to direct communication between D2D peers

    Power Allocation in Wireless Relay Networks

    Get PDF
    This thesis is mainly concerned with power allocation issues in wireless relay networks where a single or multiple relays assist transmission from a single or multiple sources to a destination. First, a network model with a single source and multiple relays is considered, in which both cases of orthogonal and non--orthogonal relaying are investigated. For the case of orthogonal relaying, two power allocation schemes corresponding to two partial channel state information (CSI) assumptions are proposed. Given the lack of full and perfect CSI, appropriate signal processing at the relays and/or destination is also developed. The performance behavior of the system with power allocation between the source and the relays is also analyzed. For the case of non-orthogonal relaying, it is demonstrated that optimal power allocation is not sufficiently effective. Instead, a relay beamforming scheme is proposed. A comprehensive comparison between the orthogonal relaying with power allocation scheme and the non-orthogonal relaying with beamforming scheme is then carried out, which reveals several interesting conclusions with respect to both error performance and system throughput. In the second part of the thesis, a network model with multiple sources and a single relay is considered. The transmission model is applicable for uplink channels in cellular mobile systems in which multiple mobile terminals communicate with the base station with the help of a single relay station. Single-carrier frequency division multiple access (SC-FDMA) technique with frequency domain equalization is adopted in order to avoid the amplification of the multiple access interference at the relay. Minimizing the transmit power at the relay and optimizing the fairness among the sources in terms of throughput are the two objectives considered in implementing power allocation schemes. The problems are visualized as water-filling and water-discharging models and two optimal power allocation schemes are proposed, accordingly. Finally, the last part of the thesis is extended to a network model with multiple sources and multiple relays. The orthogonal multiple access technique is employed in order to avoid multiple access interference. Proposed is a joint optimal beamforming and power allocation scheme in which an alternative optimization technique is applied to deal with the non-convexity of the power allocation problem. Furthermore, recognizing the high complexity and large overhead information exchange when the number of sources and relays increases, a relay selection scheme is proposed. Since each source is supported by at most one relay, the feedback information from the destination to each relay can be significantly reduced. Using an equal power allocation scheme, relay selection is still an NP-hard combinatorial optimization problem. Nevertheless, the proposed sub-optimal scheme yields a comparable performance with a much lower computational complexity and can be well suited for practical systems

    Cooperative Relaying and Resource Allocation in Future-Generation Cellular Networks

    Get PDF
    Driven by the significant consumer demand for reliable and high data rate communications, the future-generation cellular systems are expected to employ cutting-edge techniques to improve the service provisioning at substantially reduced costs. Cooperative relaying is one of the primary techniques due to its ability to improve the spectrum utilization by taking advantage of the broadcast nature of wireless signals. This dissertation studies the physical layer cooperative relaying technique and resource allocation schemes in the cooperative cellular networks to improve the spectrum and energy efficiency from the perspectives of downlink transmission, uplink transmission and device-to-device transmission, respectively. For the downlink transmission, we consider an LTE-Advanced cooperative cellular network with the deployment of Type II in-band decode-and-forward relay stations (RSs) to enhance the cell-edge throughput and to extend the coverage area. This type of relays can better exploit the broadcast nature of wireless signals while improving the utilization of existing allocated spectral resources. For such a network, we propose joint orthogonal frequency division multiplexing (OFDM) subcarrier and power allocation schemes to optimize the downlink multi-user transmission efficiency. Firstly, an optimal power dividing method between eNB and RS is proposed to maximize the achievable rate on each subcarrier. Based on this result, we show that the optimal joint resource allocation scheme for maximizing the overall throughput is to allocate each subcarrier to the user with the best channel quality and to distribute power in a water-filling manner. Since the users' Quality of Service (QoS) provision is one of the major design objectives in cellular networks, we further formulate a lexicographical optimization problem to maximize the minimum rate of all users while improving the overall throughput. A sufficient condition for optimality is derived. Due to the complexity of searching for the optimal solution, we then propose an efficient, low-complexity suboptimal joint resource allocation algorithm, which outperforms the existing suboptimal algorithms that simplify the joint design into separate allocation. Both theoretical and numerical analyses demonstrate that our proposed scheme can drastically improve the fairness as well as the overall throughput. As the physical layer uplink transmission technology for LTE-Advanced cellular network is based on single carrier frequency division multiple access (SC-FDMA) with frequency domain equalization (FDE), this dissertation further studies the uplink achievable rate and power allocation to improve the uplink spectrum efficiency in the cellular network. Different from the downlink OFDM system, signals on all subcarriers in the SC-FDMA system are transmitted sequentially rather than in parallel, thus the user's achievable rate is not simply the summation of the rates on all allocated subcarriers. Moreover, each user equipment (UE) has its own transmission power constraint instead of a total power constraint at the base station in the downlink case. Therefore, the uplink resource allocation problem in the LTE-Advanced system is more challenging. To this end, we first derive the achievable rates of the SC-FDMA system with two commonly-used FDE techniques, zero-forcing (ZF) equalization and minimum mean square error (MMSE) equalization, based on the joint superposition coding for cooperative relaying. We then propose optimal power allocation schemes among subcarriers at both UE and RS to maximize the overall throughput of the system. Theoretical analysis and numerical results are provided to demonstrate a significant gain in the system throughput by our proposed power allocation schemes. Besides the physical layer technology, the trend of improving energy efficiency in future cellular networks also motivates the network operators to continuously bring improvements in the entire network infrastructure. Such techniques include efficient base station (BS) redesign, opportunistic transmission such as device-to-device and cognitive radio communications. In the third part of this dissertation, we explore the potentials of employing cooperative relaying in a green device-to-device communication underlaying cellular network to improve the energy efficiency and spectrum utilization of the system. As the green base station is powered by sustainable energy, the design objective is to enhance both sustainability and efficiency of the device-to-device communication. Specifically, we first propose optimal power adaptation schemes to maximize the network spectrum efficiency under two practical power constraints. We then take the dynamics of the charging and discharging processes of the energy buffer at the BS into consideration to ensure the network sustainability. To this end, the energy buffer is modeled as a G/D/1 queue where the input energy has a general distribution. Power allocation schemes are proposed based on the statistics of the energy buffer to further enhance the network efficiency and sustainability. Theoretical analysis and numerical results are presented to demonstrate that our proposed power allocation schemes can improve the network throughput while maintaining the network sustainability at a certain level. Our analyses developed in this dissertation indicate that the cooperative transmission based on cooperative relaying can significantly improve the spectrum efficiency and energy efficiency of the cellular network for downlink transmission, uplink transmission and device-to-device communication. Our proposed cooperative relaying technique and resource allocation schemes can provide efficient solutions to practical design and optimization of future-generation cellular networks

    Energy and Spectral Efficient Inter Base Station Relaying in Cellular Systems

    Get PDF
    This paper considers a classic relay channel which consists of a source, a relay and a destination node and investigates the energy-spectral efficiency tradeoff under three different relay protocols: amplify-and-forward; decode-and-forward; and compress-and-forward. We focus on a cellular scenario where a neighbour base station can potentially act as the relay node to help on the transmissions of the source base station to its assigned mobile device. We employ a realistic power model and introduce a framework to evaluate the performance of different communication schemes for various deployments in a practical macrocell scenario. The results of this paper demonstrate that the proposed framework can be applied flexibly in practical scenarios to identify the pragmatic energy-spectral efficiency tradeoffs and choose the most appropriate scheme optimising the overall performance of inter base station relaying communications

    A Systematic Review of NOMA Variants for 5G and Beyond

    Get PDF
    With the fast expansion of the Internet of Things (IoT), there is an exponential need for mobile intelligent terminals .However, the connectivity of large-scale intelligent terminals is constrained by increasingly restricted spectrum resources. To address this issue, non-orthogonal multiple access (NOMA) technology, which can handle more users with less resources, is predicted to enable future wireless networks beyond 5G,., 6G, to give huge terminal access. The fundamental idea behind NOMA is to superimpose signals from numerous users on the same time-frequency resource prior to transmission. At the receiver, serial interference cancellation (SIC) technology is used to reduce interference among users. In this  review paper  we discusses the principles of the strong candidate Non-Orthogonal Multiple Access (NOMA) approach, as well as how it can best match the requirements of the Fifth Generation (5G) requirements in practical applications.  

    Advanced Technologies for Device-to-device Communications Underlaying Cellular Networks

    Get PDF
    The past few years have seen a major change in cellular networks, as explosive growth in data demands requires more and more network capacity and backhaul capability. New wireless technologies have been proposed to tackle these challenges. One of the emerging technologies is device-to-device (D2D) communications. It enables two cellular user equip- ment (UEs) in proximity to communicate with each other directly reusing cellular radio resources. In this case, D2D is able to of oad data traf c from central base stations (BSs) and signi cantly improve the spectrum ef ciency of a cellular network, and thus is one of the key technologies for the next generation cellular systems. Radio resource management (RRM) for D2D communications and how to effectively exploit the potential bene ts of D2D are two paramount challenges to D2D communications underlaying cellular networks. In this thesis, we focus on four problems related to these two challenges. In Chapter 2, we utilise the mixed integer non-linear programming (MINLP) to model and solve the RRM optimisation problems for D2D communications. Firstly we consider the RRM optimisation problem for D2D communications underlaying the single carrier frequency division multiple access (SC-FDMA) system and devise a heuristic sub- optimal solution to it. Then we propose an optimised RRM mechanism for multi-hop D2D communications with network coding (NC). NC has been proven as an ef cient technique to improve the throughput of ad-hoc networks and thus we apply it to multi-hop D2D communications. We devise an optimal solution to the RRM optimisation problem for multi-hop D2D communications with NC. In Chapter 3, we investigate how the location of the D2D transmitter in a cell may affect the RRM mechanism and the performance of D2D communications. We propose two optimised location-based RRM mechanisms for D2D, which maximise the throughput and the energy ef ciency of D2D, respectively. We show that, by considering the location information of the D2D transmitter, the MINLP problem of RRM for D2D communications can be transformed into a convex optimisation problem, which can be ef ciently solved by the method of Lagrangian multipliers. In Chapter 4, we propose a D2D-based P2P le sharing system, which is called Iunius. The Iunius system features: 1) a wireless P2P protocol based on Bittorrent protocol in the application layer; 2) a simple centralised routing mechanism for multi-hop D2D communications; 3) an interference cancellation technique for conventional cellular (CC) uplink communications; and 4) a radio resource management scheme to mitigate the interference between CC and D2D communications that share the cellular uplink radio resources while maximising the throughput of D2D communications. We show that with the properly designed application layer protocol and the optimised RRM for D2D communications, Iunius can signi cantly improve the quality of experience (QoE) of users and of oad local traf c from the base station. In Chapter 5, we combine LTE-unlicensed with D2D communications. We utilise LTE-unlicensed to enable the operation of D2D in unlicensed bands. We show that not only can this improve the throughput of D2D communications, but also allow D2D to work in the cell central area, which normally regarded as a “forbidden area” for D2D in existing works. We achieve these results mainly through numerical optimisation and simulations. We utilise a wide range of numerical optimisation theories in our works. Instead of utilising the general numerical optimisation algorithms to solve the optimisation problems, we modify them to be suitable for the speci c problems, thereby reducing the computational complexity. Finally, we evaluate our proposed algorithms and systems through sophisticated numer- ical simulations. We have developed a complete system-level simulation framework for D2D communications and we open-source it in Github: https://github.com/mathwuyue/py- wireless-sys-sim
    • …
    corecore