164 research outputs found

    Physical Layer Service Integration in 5G: Potentials and Challenges

    Full text link
    High transmission rate and secure communication have been identified as the key targets that need to be effectively addressed by fifth generation (5G) wireless systems. In this context, the concept of physical-layer security becomes attractive, as it can establish perfect security using only the characteristics of wireless medium. Nonetheless, to further increase the spectral efficiency, an emerging concept, termed physical-layer service integration (PHY-SI), has been recognized as an effective means. Its basic idea is to combine multiple coexisting services, i.e., multicast/broadcast service and confidential service, into one integral service for one-time transmission at the transmitter side. This article first provides a tutorial on typical PHY-SI models. Furthermore, we propose some state-of-the-art solutions to improve the overall performance of PHY-SI in certain important communication scenarios. In particular, we highlight the extension of several concepts borrowed from conventional single-service communications, such as artificial noise (AN), eigenmode transmission etc., to the scenario of PHY-SI. These techniques are shown to be effective in the design of reliable and robust PHY-SI schemes. Finally, several potential research directions are identified for future work.Comment: 12 pages, 7 figure

    Filter bank multicarrier waveforms for future wireless networks: interference analysis and cancellation

    Get PDF
    Billions of devices are expected to connect to future wireless networks. Although conventional orthogonal division multiplexing (OFDM) has proven to be an effective physical layer waveform for enhanced mobile broadband (eMBB), it experiences various challenges. For example, OFDM experiences high out-of-band (OOB) emission caused by the use of rectangular filters. This causes interference to adjacent frequency bands and make OFDM highly sensitive to asynchronous transmissions. Filter bank multicarrier (FBMC) systems have emerged as a promising waveform candidate to satisfy the requirements of future wireless networks. They employ prototype filters with faster spectral decay, which results in better OOB emission and spectral efficiency compared to OFDM. Also, FBMC systems support asynchronous transmissions, which can reduce the signaling overhead in future applications. However, in FBMC systems there is no subcarriers orthogonality, resulting in intrinsic interference. The purpose of this thesis is to address the intrinsic interference problem to make FBMC a viable option for practical application in future wireless networks. In this thesis, iterative interference cancellation (IIC) receivers are developed for FBMC systems to improve their performance and applicability in future applications. First, an IIC receiver is studied for uncoded FBMC with quadrature amplitude modulation (FBMC-QAM) systems. To improve the decoding performance, bit-interleaved coded modulation with iterative decoding (BICM-ID) is incorporated into the IIC receiver design and the technique of extrinsic information transfer (EXIT) chart analysis is used to track the convergence of the IIC-based BICM-ID receiver. Furthermore, the energy harvesting capabilities of FBMC is considered. Particularly, FBMC is integrated with a simultaneous wireless information and power transfer (SWIPT) technique. Finally, an interference cancellation receiver is investigated for asynchronous FBMC systems in both single and mixed numerology systems. Analytical expressions are derived for the various schemes and simulations results are shown to verify the performance of the different FBMC systems

    Integrated Data and Energy Communication Network: A Comprehensive Survey

    Get PDF
    OAPA In order to satisfy the power thirsty of communication devices in the imminent 5G era, wireless charging techniques have attracted much attention both from the academic and industrial communities. Although the inductive coupling and magnetic resonance based charging techniques are indeed capable of supplying energy in a wireless manner, they tend to restrict the freedom of movement. By contrast, RF signals are capable of supplying energy over distances, which are gradually inclining closer to our ultimate goal – charging anytime and anywhere. Furthermore, transmitters capable of emitting RF signals have been widely deployed, such as TV towers, cellular base stations and Wi-Fi access points. This communication infrastructure may indeed be employed also for wireless energy transfer (WET). Therefore, no extra investment in dedicated WET infrastructure is required. However, allowing RF signal based WET may impair the wireless information transfer (WIT) operating in the same spectrum. Hence, it is crucial to coordinate and balance WET and WIT for simultaneous wireless information and power transfer (SWIPT), which evolves to Integrated Data and Energy communication Networks (IDENs). To this end, a ubiquitous IDEN architecture is introduced by summarising its natural heterogeneity and by synthesising a diverse range of integrated WET and WIT scenarios. Then the inherent relationship between WET and WIT is revealed from an information theoretical perspective, which is followed by the critical appraisal of the hardware enabling techniques extracting energy from RF signals. Furthermore, the transceiver design, resource allocation and user scheduling as well as networking aspects are elaborated on. In a nutshell, this treatise can be used as a handbook for researchers and engineers, who are interested in enriching their knowledge base of IDENs and in putting this vision into practice
    corecore