1,123 research outputs found

    Resolvable Mendelsohn designs and finite Frobenius groups

    Full text link
    We prove the existence and give constructions of a (p(k)−1)(p(k)-1)-fold perfect resolvable (v,k,1)(v, k, 1)-Mendelsohn design for any integers v>k≥2v > k \ge 2 with v≡1mod  kv \equiv 1 \mod k such that there exists a finite Frobenius group whose kernel KK has order vv and whose complement contains an element ϕ\phi of order kk, where p(k)p(k) is the least prime factor of kk. Such a design admits K⋊⟨ϕ⟩K \rtimes \langle \phi \rangle as a group of automorphisms and is perfect when kk is a prime. As an application we prove that for any integer v=p1e1…ptet≥3v = p_{1}^{e_1} \ldots p_{t}^{e_t} \ge 3 in prime factorization, and any prime kk dividing piei−1p_{i}^{e_i} - 1 for 1≤i≤t1 \le i \le t, there exists a resolvable perfect (v,k,1)(v, k, 1)-Mendelsohn design that admits a Frobenius group as a group of automorphisms. We also prove that, if kk is even and divides pi−1p_{i} - 1 for 1≤i≤t1 \le i \le t, then there are at least φ(k)t\varphi(k)^t resolvable (v,k,1)(v, k, 1)-Mendelsohn designs that admit a Frobenius group as a group of automorphisms, where φ\varphi is Euler's totient function.Comment: Final versio

    Resolution of the Oberwolfach problem

    Get PDF
    The Oberwolfach problem, posed by Ringel in 1967, asks for a decomposition of K2n+1K_{2n+1} into edge-disjoint copies of a given 22-factor. We show that this can be achieved for all large nn. We actually prove a significantly more general result, which allows for decompositions into more general types of factors. In particular, this also resolves the Hamilton-Waterloo problem for large nn.Comment: 28 page

    Frame difference families and resolvable balanced incomplete block designs

    Full text link
    Frame difference families, which can be obtained via a careful use of cyclotomic conditions attached to strong difference families, play an important role in direct constructions for resolvable balanced incomplete block designs. We establish asymptotic existences for several classes of frame difference families. As corollaries new infinite families of 1-rotational (pq+1,p+1,1)(pq+1,p+1,1)-RBIBDs over Fp+×Fq+\mathbb{F}_{p}^+ \times \mathbb{F}_{q}^+ are derived, and the existence of (125q+1,6,1)(125q+1,6,1)-RBIBDs is discussed. We construct (v,8,1)(v,8,1)-RBIBDs for v∈{624,1576,2976,5720,5776,10200,14176,24480}v\in\{624,1576,2976,5720,5776,10200,14176,24480\}, whose existence were previously in doubt. As applications, we establish asymptotic existences for an infinite family of optimal constant composition codes and an infinite family of strictly optimal frequency hopping sequences.Comment: arXiv admin note: text overlap with arXiv:1702.0750

    Spectrum of Sizes for Perfect Deletion-Correcting Codes

    Full text link
    One peculiarity with deletion-correcting codes is that perfect tt-deletion-correcting codes of the same length over the same alphabet can have different numbers of codewords, because the balls of radius tt with respect to the Levenshte\u{\i}n distance may be of different sizes. There is interest, therefore, in determining all possible sizes of a perfect tt-deletion-correcting code, given the length nn and the alphabet size~qq. In this paper, we determine completely the spectrum of possible sizes for perfect qq-ary 1-deletion-correcting codes of length three for all qq, and perfect qq-ary 2-deletion-correcting codes of length four for almost all qq, leaving only a small finite number of cases in doubt.Comment: 23 page

    New 22-designs from strong difference families

    Full text link
    Strong difference families are an interesting class of discrete structures which can be used to derive relative difference families. Relative difference families are closely related to 22-designs, and have applications in constructions for many significant codes, such as optical orthogonal codes and optical orthogonal signature pattern codes. In this paper, with a careful use of cyclotomic conditions attached to strong difference families, we improve the lower bound on the asymptotic existence results of (Fp×Fq,Fp×{0},k,λ)(\mathbb{F}_{p}\times \mathbb{F}_{q},\mathbb{F}_{p}\times \{0\},k,\lambda)-DFs for k∈{p,p+1}k\in\{p,p+1\}. We improve Buratti's existence results for 22-(13q,13,λ)(13q,13,\lambda) designs and 22-(17q,17,λ)(17q,17,\lambda) designs, and establish the existence of seven new 22-(v,k,λ)(v,k,\lambda) designs for (v,k,λ)∈{(694,7,2),(1576,8,1),(2025,9,1),(765,9,2),(1845,9,2),(459,9,4)(v,k,\lambda)\in\{(694,7,2),(1576,8,1),(2025,9,1),(765,9,2),(1845,9,2),(459,9,4), (783,9,4)}(783,9,4)\}.Comment: Version 1 is named "Improved cyclotomic conditions leading to new 2-designs: the use of strong difference families". Major revision according to the referees' comment
    • …
    corecore