39 research outputs found

    Scalable Wavelet-Based Active Network Stepping Stone Detection

    Get PDF
    Network intrusions leverage vulnerable hosts as stepping stones to penetrate deeper into a network and mask malicious actions from detection. This research focuses on a novel active watermark technique using Discrete Wavelet Transformations to mark and detect interactive network sessions. This technique is scalable, nearly invisible and resilient to multi-flow attacks. The watermark is simulated using extracted timestamps from the CAIDA 2009 dataset and replicated in a live environment. The simulation results demonstrate that the technique accurately detects the presence of a watermark at a 5% False Positive and False Negative rate for both the extracted timestamps as well as the empirical tcplib distribution. The watermark extraction accuracy is approximately 92%. The live experiment is implemented using the Amazon Elastic Compute Cloud. The client system sends marked and unmarked packets from California to Virginia using stepping stones in Tokyo, Ireland and Oregon. Five trials are conducted using simultaneous watermarked and unmarked samples. The live results are similar to the simulation and provide evidence demonstrating the effectiveness in a live environment to identify stepping stones

    Fuzzy intrusion detection

    Get PDF
    Visual data mining techniques are used to assess which metrics are most effective at detecting different types of attacks. The research confirms that data aggregation and data reduction play crucial roles in the formation of the metrics. Once the proper metrics are identified, fuzzy rules are constructed for detecting attacks in several categories. The attack categories are selected to match the different phases that intruders frequently use when attacking a system. A suite of attacks tools is assembled to test the fuzzy rules. The research shows that fuzzy rules applied to good metrics can provide an effective means of detecting a wide variety of network intrusion activity. This research is being used as a proof of concept for the development of system known as the Fuzzy Intrusion Recognition Engine (FIRE).This thesis examines the application of fuzzy systems to the problem of network intrusion detection. Historically, there have been two primary methods of performing intrusion detection: misuse detection and anomaly detection. In misuse detection, a database of attack signatures is maintained that match known intrusion activity. While misuse detection systems are very effective, they require constant updates to the signature database to remain effective or to detect distinctly new attacks. Anomaly detection systems attempt to discover suspicious behavior by comparing system activity against past usage profiles. In this research, network activity is collected and usage profiles established for a variety of metrics. A network data gathering and data analysis tool was developed to create the metrics from the network stream. Great care is given to identifying the metrics that are most suitable for detecting intrusion activity

    Command & Control: Understanding, Denying and Detecting - A review of malware C2 techniques, detection and defences

    Full text link
    In this survey, we first briefly review the current state of cyber attacks, highlighting significant recent changes in how and why such attacks are performed. We then investigate the mechanics of malware command and control (C2) establishment: we provide a comprehensive review of the techniques used by attackers to set up such a channel and to hide its presence from the attacked parties and the security tools they use. We then switch to the defensive side of the problem, and review approaches that have been proposed for the detection and disruption of C2 channels. We also map such techniques to widely-adopted security controls, emphasizing gaps or limitations (and success stories) in current best practices.Comment: Work commissioned by CPNI, available at c2report.org. 38 pages. Listing abstract compressed from version appearing in repor

    Wide spectrum attribution: Using deception for attribution intelligence in cyber attacks

    Get PDF
    Modern cyber attacks have evolved considerably. The skill level required to conduct a cyber attack is low. Computing power is cheap, targets are diverse and plentiful. Point-and-click crimeware kits are widely circulated in the underground economy, while source code for sophisticated malware such as Stuxnet is available for all to download and repurpose. Despite decades of research into defensive techniques, such as firewalls, intrusion detection systems, anti-virus, code auditing, etc, the quantity of successful cyber attacks continues to increase, as does the number of vulnerabilities identified. Measures to identify perpetrators, known as attribution, have existed for as long as there have been cyber attacks. The most actively researched technical attribution techniques involve the marking and logging of network packets. These techniques are performed by network devices along the packet journey, which most often requires modification of existing router hardware and/or software, or the inclusion of additional devices. These modifications require wide-scale infrastructure changes that are not only complex and costly, but invoke legal, ethical and governance issues. The usefulness of these techniques is also often questioned, as attack actors use multiple stepping stones, often innocent systems that have been compromised, to mask the true source. As such, this thesis identifies that no publicly known previous work has been deployed on a wide-scale basis in the Internet infrastructure. This research investigates the use of an often overlooked tool for attribution: cyber de- ception. The main contribution of this work is a significant advancement in the field of deception and honeypots as technical attribution techniques. Specifically, the design and implementation of two novel honeypot approaches; i) Deception Inside Credential Engine (DICE), that uses policy and honeytokens to identify adversaries returning from different origins and ii) Adaptive Honeynet Framework (AHFW), an introspection and adaptive honeynet framework that uses actor-dependent triggers to modify the honeynet envi- ronment, to engage the adversary, increasing the quantity and diversity of interactions. The two approaches are based on a systematic review of the technical attribution litera- ture that was used to derive a set of requirements for honeypots as technical attribution techniques. Both approaches lead the way for further research in this field

    Scalable and Efficient Network Anomaly Detection on Connection Data Streams

    Get PDF
    Everyday, security experts and analysts must deal with and face the huge increase of cyber security threats that are propagating very fast on the Internet and threatening the security of hundreds of millions of users worldwide. The detection of such threats and attacks is of paramount importance to these experts in order to prevent these threats and mitigate their effects in the future. Thus, the need for security solutions that can prevent, detect, and mitigate such threats is imminent and must be addressed with scalable and efficient solutions. To this end, we propose a scalable framework, called Daedalus, to analyze streams of NIDS (network-based intrusion detection system) logs in near real-time and to extract useful threat security intelligence. The proposed system pre-processes massive amounts of connections stream logs received from different participating organizations and applies an elaborated anomaly detection technique in order to distinguish between normal and abnormal or anomalous network behaviors. As such, Daedalus detects network traffic anomalies by extracting a set of significant pre-defined features from the connection logs and then applying a time series-based technique in order to detect abnormal behavior in near real-time. Moreover, we correlate IP blocks extracted from the logs with some external security signature-based feeds that detect factual malicious activities (e.g., malware families and hashes, ransomware distribution, and command and control centers) in order to validate the proposed approach. Performed experiments demonstrate that Daedalus accurately identifies the malicious activities with an average F_1 score of 92.88\%. We further compare our proposed approach with existing K-Means and deep learning (LSTMs) approaches and demonstrate the accuracy and efficiency of our system

    Doctor of Philosophy

    Get PDF
    dissertationThere are many bacteria that associate with insects in a mutualistic manner and offer their hosts distinct fitness advantages, and thus have likely played an important role in shaping the ecology and evolution of insects. Therefore, there is much interest in understanding how these relationships are initiated and maintained and the molecular mechanisms involved in this process, as well as interest in developing symbionts as platforms for paratransgenesis to combat disease transmission by insect hosts. However, this research has been hampered by having only a limited number of systems to work with, due to the difficulties in isolating and modifying bacterial symbionts in the lab. In this dissertation, I present my work in developing a recently described insect-bacterial symbiosis, that of the louse fly, Pseudolynchia canariensis, and its bacterial symbiont, Candidatus Arsenophonus arthropodicus, into a new model system with which to investigate the mechanisms and evolution of symbiosis. This included generating and analyzing the complete genome sequence of Ca. A. arthropodicus, which provided some evidence that Ca. A. arthropodicus has become recently associated with insects and may have evolved from an ancestor that was an insect pathogen. Additionally, I describe the development of methods for genetic modification of this bacterial symbiont and for introducing recombinant symbionts into louse fly hosts, as well as a new microinjection technique that enables the complete replacement of native symbionts with recombinant symbionts. With the generation of the symbiont genome sequence along with strategies for engineering recombinant symbionts and establishing them in an insect host, this work provides an interesting new system with which to investigate the function of specific genes in symbiosis as well as a promising new avenue of research involving paratransgenesis

    Effizientes Maschinelles Lernen für die Angriffserkennung

    Get PDF
    Detecting and fending off attacks on computer systems is an enduring problem in computer security. In light of a plethora of different threats and the growing automation used by attackers, we are in urgent need of more advanced methods for attack detection. In this thesis, we address the necessity of advanced attack detection and develop methods to detect attacks using machine learning to establish a higher degree of automation for reactive security. Machine learning is data-driven and not void of bias. For the effective application of machine learning for attack detection, thus, a periodic retraining over time is crucial. However, the training complexity of many learning-based approaches is substantial. We show that with the right data representation, efficient algorithms for mining substring statistics, and implementations based on probabilistic data structures, training the underlying model can be achieved in linear time. In two different scenarios, we demonstrate the effectiveness of so-called language models that allow to generically portray the content and structure of attacks: On the one hand, we are learning malicious behavior of Flash-based malware using classification, and on the other hand, we detect intrusions by learning normality in industrial control networks using anomaly detection. With a data throughput of up to 580 Mbit/s during training, we do not only meet our expectations with respect to runtime but also outperform related approaches by up to an order of magnitude in detection performance. The same techniques that facilitate learning in the previous scenarios can also be used for revealing malicious content, embedded in passive file formats, such as Microsoft Office documents. As a further showcase, we additionally develop a method based on the efficient mining of substring statistics that is able to break obfuscations irrespective of the used key length, with up to 25 Mbit/s and thus, succeeds where related approaches fail. These methods significantly improve detection performance and enable operation in linear time. In doing so, we counteract the trend of compensating increasing runtime requirements with resources. While the results are promising and the approaches provide urgently needed automation, they cannot and are not intended to replace human experts or traditional approaches, but are designed to assist and complement them.Die Erkennung und Abwehr von Angriffen auf Endnutzer und Netzwerke ist seit vielen Jahren ein anhaltendes Problem in der Computersicherheit. Angesichts der hohen Anzahl an unterschiedlichen Angriffsvektoren und der zunehmenden Automatisierung von Angriffen, bedarf es dringend moderner Methoden zur Angriffserkennung. In dieser Doktorarbeit werden Ansätze entwickelt, um Angriffe mit Hilfe von Methoden des maschinellen Lernens zuverlässig, aber auch effizient zu erkennen. Sie stellen der Automatisierung von Angriffen einen entsprechend hohen Grad an Automatisierung von Verteidigungsmaßnahmen entgegen. Das Trainieren solcher Methoden ist allerdings rechnerisch aufwändig und erfolgt auf sehr großen Datenmengen. Laufzeiteffiziente Lernverfahren sind also entscheidend. Wir zeigen, dass durch den Einsatz von effizienten Algorithmen zur statistischen Analyse von Zeichenketten und Implementierung auf Basis von probabilistischen Datenstrukturen, das Lernen von effektiver Angriffserkennung auch in linearer Zeit möglich ist. Anhand von zwei unterschiedlichen Anwendungsfällen, demonstrieren wir die Effektivität von Modellen, die auf der Extraktion von sogenannten n-Grammen basieren: Zum einen, betrachten wir die Erkennung von Flash-basiertem Schadcode mittels Methoden der Klassifikation, und zum anderen, die Erkennung von Angriffen auf Industrienetzwerke bzw. SCADA-Systeme mit Hilfe von Anomaliedetektion. Dabei erzielen wir während des Trainings dieser Modelle einen Datendurchsatz von bis zu 580 Mbit/s und übertreffen gleichzeitig die Erkennungsleistung von anderen Ansätzen deutlich. Die selben Techniken, um diese lernenden Ansätze zu ermöglichen, können außerdem für die Erkennung von Schadcode verwendet werden, der in anderen Dateiformaten eingebettet und mittels einfacher Verschlüsselungen obfuskiert wurde. Hierzu entwickeln wir eine Methode die basierend auf der statistischen Auswertung von Zeichenketten einfache Verschlüsselungen bricht. Der entwickelte Ansatz arbeitet unabhängig von der verwendeten Schlüssellänge, mit einem Datendurchsatz von bis zu 25 Mbit/s und ermöglicht so die erfolgreiche Deobfuskierung in Fällen an denen andere Ansätze scheitern. Die erzielten Ergebnisse in Hinsicht auf Laufzeiteffizienz und Erkennungsleistung sind vielversprechend. Die vorgestellten Methoden ermöglichen die dringend nötige Automatisierung von Verteidigungsmaßnahmen, sollen den Experten oder etablierte Methoden aber nicht ersetzen, sondern diese unterstützen und ergänzen
    corecore