17,906 research outputs found

    Sequential Circuit Design for Embedded Cryptographic Applications Resilient to Adversarial Faults

    Get PDF
    In the relatively young field of fault-tolerant cryptography, the main research effort has focused exclusively on the protection of the data path of cryptographic circuits. To date, however, we have not found any work that aims at protecting the control logic of these circuits against fault attacks, which thus remains the proverbial Achilles’ heel. Motivated by a hypothetical yet realistic fault analysis attack that, in principle, could be mounted against any modular exponentiation engine, even one with appropriate data path protection, we set out to close this remaining gap. In this paper, we present guidelines for the design of multifault-resilient sequential control logic based on standard Error-Detecting Codes (EDCs) with large minimum distance. We introduce a metric that measures the effectiveness of the error detection technique in terms of the effort the attacker has to make in relation to the area overhead spent in implementing the EDC. Our comparison shows that the proposed EDC-based technique provides superior performance when compared against regular N-modular redundancy techniques. Furthermore, our technique scales well and does not affect the critical path delay

    Climate Resilient & Equitable Water Systems Capital Scan

    Get PDF
    Climate change is affecting water supply, water management and the health of communities in U.S. cities. Changes in the timing, frequency and intensity of precipitation are placing stress on the built and natural systems that provide fresh water, manage storm water, and treat wastewater. Droughts are shrinking the water supply; heavy rainfall overburdens storm water systems, causing flooding in homes and neighborhoods. Low-income people and communities of color are often the most vulnerable to climate change, living in low-lying areas and lacking the resources to adapt and cope with challenges associated with these patterns.The cumulative impact of climate change on water resources not only leads to a reduction in water quality and the destruction of homes and property, but it can also be a threat to public health, force relocation of communities and cause economic harm.The vision of Kresge's Environment Program is to help communities build resilience in the face of climate change. We believe that cities are central to action on climate change and equity must be a fundamental part of our work in climate adaptation, climate mitigation and building social cohesion

    Adaptation and Resilience of Interdependent Infrastructure Systems: a Complex Systems Perspective

    Get PDF
    The effects of disruption upon one or more components in interdependent infrastructure systems and the ability of the system to return to normal operations, is investigated in this paper. This addresses the concept of resilience, and examines the trade-off between redundancy and efficiency, as well as the adaptive ability of a system to respond to disruptions and continue to operate, albeit not necessarily as it did initially

    Learning from the Anthropocene: Adaptive Epistemology and Complexity in Strategic Managerial Thinking

    Get PDF
    open access articleTurbulence experienced in the business and social realms resonates with turbulence unfolding throughout the biosphere, as a process of accelerating change at the stratigraphic scale termed the Anthropocene. The Anthropocene is understood as a multi‐dimensional limit point, one dimension of which concerns the limits to the lineal epistemology prevalent since the Age of the Enlightenment. This paper argues that future conditions necessitate the updating of a lineal epistemology through a transition towards resilience thinking that is both adaptive and ecosystemic. A management paradigm informed by the recognition of multiple equilibria states distinguished by thresholds, and incorporating adaptive and resilience thinking is considered. This paradigm is thought to enhance flexibility and the capacity to absorb influences without crossing thresholds into alternate stable, but less desirable, states. One consequence is that evaluations of success may change, and these changes are considered and explored as likely on‐going challenges businesses must grapple with into the future

    Optimizing the Structure and Scale of Urban Water Infrastructure: Integrating Distributed Systems

    Get PDF
    Large-scale, centralized water infrastructure has provided clean drinking water, wastewater treatment, stormwater management and flood protection for U.S. cities and towns for many decades, protecting public health, safety and environmental quality. To accommodate increasing demands driven by population growth and industrial needs, municipalities and utilities have typically expanded centralized water systems with longer distribution and collection networks. This approach achieves financial and institutional economies of scale and allows for centralized management. It comes with tradeoffs, however, including higher energy demands for longdistance transport; extensive maintenance needs; and disruption of the hydrologic cycle, including the large-scale transfer of freshwater resources to estuarine and saline environments.While smaller-scale distributed water infrastructure has been available for quite some time, it has yet to be widely adopted in urban areas of the United States. However, interest in rethinking how to best meet our water and sanitation needs has been building. Recent technological developments and concerns about sustainability and community resilience have prompted experts to view distributed systems as complementary to centralized infrastructure, and in some situations the preferred alternative.In March 2014, the Johnson Foundation at Wingspread partnered with the Water Environment Federation and the Patel College of Global Sustainability at the University of South Florida to convene a diverse group of experts to examine the potential for distributed water infrastructure systems to be integrated with or substituted for more traditional water infrastructure, with a focus on right-sizing the structure and scale of systems and services to optimize water, energy and sanitation management while achieving long-term sustainability and resilience

    Classifying resilience approaches for protecting smart grids against cyber threats

    Get PDF
    Smart grids (SG) draw the attention of cyber attackers due to their vulnerabilities, which are caused by the usage of heterogeneous communication technologies and their distributed nature. While preventing or detecting cyber attacks is a well-studied field of research, making SG more resilient against such threats is a challenging task. This paper provides a classification of the proposed cyber resilience methods against cyber attacks for SG. This classification includes a set of studies that propose cyber-resilient approaches to protect SG and related cyber-physical systems against unforeseen anomalies or deliberate attacks. Each study is briefly analyzed and is associated with the proper cyber resilience technique which is given by the National Institute of Standards and Technology in the Special Publication 800-160. These techniques are also linked to the different states of the typical resilience curve. Consequently, this paper highlights the most critical challenges for achieving cyber resilience, reveals significant cyber resilience aspects that have not been sufficiently considered yet and, finally, proposes scientific areas that should be further researched in order to enhance the cyber resilience of SG.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. Funding for open access charge: Universidad de Málaga / CBUA
    corecore