5,710 research outputs found

    Overlay networks for smart grids

    Get PDF

    Integration of Data Driven Technologies in Smart Grids for Resilient and Sustainable Smart Cities: A Comprehensive Review

    Full text link
    A modern-day society demands resilient, reliable, and smart urban infrastructure for effective and in telligent operations and deployment. However, unexpected, high-impact, and low-probability events such as earthquakes, tsunamis, tornadoes, and hurricanes make the design of such robust infrastructure more complex. As a result of such events, a power system infrastructure can be severely affected, leading to unprecedented events, such as blackouts. Nevertheless, the integration of smart grids into the existing framework of smart cities adds to their resilience. Therefore, designing a resilient and reliable power system network is an inevitable requirement of modern smart city infras tructure. With the deployment of the Internet of Things (IoT), smart cities infrastructures have taken a transformational turn towards introducing technologies that do not only provide ease and comfort to the citizens but are also feasible in terms of sustainability and dependability. This paper presents a holistic view of a resilient and sustainable smart city architecture that utilizes IoT, big data analytics, unmanned aerial vehicles, and smart grids through intelligent integration of renew able energy resources. In addition, the impact of disasters on the power system infrastructure is investigated and different types of optimization techniques that can be used to sustain the power flow in the network during disturbances are compared and analyzed. Furthermore, a comparative review analysis of different data-driven machine learning techniques for sustainable smart cities is performed along with the discussion on open research issues and challenges

    When Social Media Fails: Exploring Alternative Technologies for Effective Communication in Disasters

    Get PDF
    Effective communication plays a critical role in disaster management, encompassing both data gathering and information dissemination. This study examines the utilization of alternative technologies for communication during disasters, aiming to address the vulnerabilities of relying solely on social media platforms. To answer the research questions, a qualitative methodology employing an inductive approach was used to gather and analyze data from literature and officers working in disaster management organizations. The research findings reveal the efficacy of employing SMS, emails, phone calls, and other supporting technologies as viable alternatives for disaster communication. These approaches have demonstrated their reliability to overcome challenges posed by social media disruptions. The study emphasizes the importance of diversifying communication channels to ensure inclusive and resilient communication strategies within disaster management organizations. Overall, this study contributes to enhancing the effectiveness of disaster communication strategies by incorporating alternative technologies and addressing the limitations of social media platforms

    How Resilient Are Our Societies? Analyses, Models, and Preliminary Results

    Full text link
    Traditional social organizations such as those for the management of healthcare and civil defence are the result of designs and realizations that matched well with an operational context considerably different from the one we are experiencing today: A simpler world, characterized by a greater amount of resources to match less users producing lower peaks of requests. The new context reveals all the fragility of our societies: unmanageability is just around the corner unless we do not complement the "old recipes" with smarter forms of social organization. Here we analyze this problem and propose a refinement to our fractal social organizations as a model for resilient cyber-physical societies. Evidence to our claims is provided by simulating our model in terms of multi-agent systems.Comment: Paper submitted for publication in the Proc. of SERENE 2015 (http://serene.disim.univaq.it/2015/

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    VECTORS: Video communication through opportunistic relays and scalable video coding

    Full text link
    Crowd-sourced video distribution is frequently of interest in the local vicinity. In this paper, we propose a novel design to transfer such content over opportunistic networks with adaptive quality encoding to achieve reasonable delay bounds. The video segments are transmitted between source and destination in a delay tolerant manner using the Nearby Connections Android library. This implementation can be applied to multiple domains, including farm monitoring, wildlife, and environmental tracking, disaster response scenarios, etc. In this work, we present the design of an opportunistic contact based system, and we discuss basic results for the trial runs within our institute.Comment: 13 pages, 6 figures, and under 3000 words for submission to the SoftwareX journa
    corecore