1,570 research outputs found

    SDN management layer: design requirements and future direction

    Full text link
    Computer networks are becoming more and more complex and difficult to manage. The research community has been expending a lot of efforts to come up with a general management paradigm that is able to hide the details of the physical infrastructure and enable flexible network management. Software Defined Networking (SDN) is such a paradigm that simplifies network management and enables network innovations. In this survey paper, by reviewing existing SDN management layers (platforms), we identify the general common management architecture for SDN networks, and further identify the design requirements of the management layer that is at the core of the architecture. We also point out open issues and weaknesses of existing SDN management layers. We conclude with a promising future direction for improving the SDN management layer.This work is supported in part by the National Science Foundation (NSF grant CNS-0963974)

    SDN Access Control for the Masses

    Full text link
    The evolution of Software-Defined Networking (SDN) has so far been predominantly geared towards defining and refining the abstractions on the forwarding and control planes. However, despite a maturing south-bound interface and a range of proposed network operating systems, the network management application layer is yet to be specified and standardized. It has currently poorly defined access control mechanisms that could be exposed to network applications. Available mechanisms allow only rudimentary control and lack procedures to partition resource access across multiple dimensions. We address this by extending the SDN north-bound interface to provide control over shared resources to key stakeholders of network infrastructure: network providers, operators and application developers. We introduce a taxonomy of SDN access models, describe a comprehensive design for SDN access control and implement the proposed solution as an extension of the ONOS network controller intent framework

    Simplification of Internet Ossification through Software Defined Network Approach

    Get PDF
    Software-Defined Networking (SDN) has received great responses from software industry in recent years. SDN has introduced number of technical symposium and technical discussions on computer network paradigm and topological design, along with research and scientific contributions. Fellow researchers, system administrators and engineers working on computer network, and hardware service providers are trying to establish new standards and provide guidelines for proper accomplishment and exploitation of such fresh approach. Now a day�s efforts have been made in the southbound of the SDN architecture, while the northbound interface still needs improvements. Focusing in the SDN northbound, this paper is concentrating on relative study of the body of acquaintance and discusses the challenges for developing SDN software.SDN also inspect and focused on the existing solutions and to search out trends and challenge on programming for SDN environments. In this paper the vision developments on techniques, provision, and methodologies for programmable networks, with the correct view in respect or aspect from the field of emerging software engineering is discussed.

    Optical Network Models and their Application to Software-Defined Network Management

    Get PDF
    Software-defined networking is finding its way into optical networks. Here, it promises a simplification and unification of network management for optical networks allowing automation of operational tasks despite the highly diverse and vendor-specific commercial systems and the complexity and analog nature of optical transmission. A fundamental component for software-defined optical networking are common abstractions and interfaces. Currently, a number of models for optical networks are available. They all claim to provide open and vendor agnostic management of optical equipment. In this work, we survey and compare the most important models and propose an intent interface for creating virtual topologies that is integrated in the existing model ecosystem.Comment: Parts of the presented work has received funding from the European Commission within the H2020 Research and Innovation Programme, under grant agreeement n.645127, project ACIN

    High-Level Abstractions for Programming Network Policies

    Get PDF
    The emergence of network programmability enabled by innovations such as active network- ing, SDN and NFV offers tremendous flexibility to program network policies. However, it also poses a new demand to network operators on programming network policies. The motivation of this dissertation is to study the feasibility of using high-level abstractions to simplify the programming of network policies. First, we propose scenario-based programming, a framework that allows network operators to program stateful network policies by describing example behaviors in representative scenarios. Given these scenarios, our scenario-based programming tool NetEgg automatically infers the controller state that needs to be maintained along with the rules to process network events and update state. The NetEgg interpreter can execute the generated policy implementation on top of a centralized controller, but also automatically infers flow-table rules that can be pushed to switches to improve throughput. We study a range of policies considered in the literature and report our experience regarding specifying these policies using scenarios. We evaluate NetEgg based on the computational requirements of our synthesis algorithm as well as the overhead introduced by the generated policy implementation. Our results show that our synthesis algorithm can generate policy implementations in seconds, and the automatically generated policy implementations have performance comparable to their hand-crafted implementations. Our preliminary user study results show that NetEgg was able to reduce the programming time of the policies we studied. Second, we propose NetQRE, a high-level declarative language for programming quantitative network policies that require monitoring a stream of network packets. Based on a novel theoretical foundation of parameterized quantitative regular expressions, NetQRE integrates regular-expression-like pattern matching at flow-level as well as application-level payloads with aggregation operations such as sum and average counts. We describe a compiler for NetQRE that automatically generates an efficient implementation from the specification in NetQRE. Our evaluation results demonstrate that NetQRE is expressive to specify a wide range of quantitative network policies that cannot be naturally specified in other systems. The performance of the generated implementations is comparable with that of the manually-optimized low-level code. NetQRE can be deployed in different settings. Our proof-of-concept deployment shows that NetQRE can provide timely enforcement of quantitative network policies
    • …
    corecore