14,214 research outputs found

    High-resolution truncated plurigaussian simulations for the characterization of heterogeneous formations

    Get PDF
    Integrating geological concepts, such as relative positions and proportions of the different lithofacies, is of highest importance in order to render realistic geological patterns. The truncated plurigaussian simulation method provides a way of using both local and conceptual geological information to infer the distributions of the facies and then those of hydraulic parameters. The method (Le Loc'h and Galli 1994) is based on the idea of truncating at least two underlying multi-Gaussian simulations in order to create maps of categorical variable. In this manuscript we show how this technique can be used to assess contaminant migration in highly heterogeneous media. We illustrate its application on the biggest contaminated site of Switzerland. It consists of a contaminant plume located in the lower fresh water Molasse on the western Swiss Plateau. The highly heterogeneous character of this formation calls for efficient stochastic methods in order to characterize transport processes.Comment: 12 pages, 9 figure

    Exploratory modeling: Extracting causality from complexity

    Get PDF
    On 22 May 2011 a massive tornado tore through Joplin, Mo., killing 158 people. With winds blowing faster than 200 miles per hour, the tornado was the most deadly in the United States since modern record keeping began in the 1950s. ©2014. American Geophysical Union. All Rights Reserved

    Techniques for augmenting the visualisation of dynamic raster surfaces

    Get PDF
    Despite their aesthetic appeal and condensed nature, dynamic raster surface representations such as a temporal series of a landform and an attribute series of a socio-economic attribute of an area, are often criticised for the lack of an effective information delivery and interactivity.In this work, we readdress some of the earlier raised reasons for these limitations -information-laden quality of surface datasets, lack of spatial and temporal continuity in the original data, and a limited scope for a real-time interactivity. We demonstrate with examples that the use of four techniques namely the re-expression of the surfaces as a framework of morphometric features, spatial generalisation, morphing, graphic lag and brushing can augment the visualisation of dynamic raster surfaces in temporal and attribute series

    An 'expert approach' to enhance GIS training: the case study of land-use suitability mapping

    No full text
    To enhance the learning and teaching of geographic information systems in higher-education Earth sciences, we present results from a research which identified the strategies and concepts that underlie the suitability-mapping process. The analysis of common practices in mapping and GIS environmental projects led our attention to a particular kind of mapping: GIS-bases land-use suitability mapping, with multi criteria spatial analysis method. This method has a professionalizing nature since it supports the debate on territorial choices that involve decision making. Indeed, from a pedagogical point of view, this method, allows a progressive and comprehensive approach to the use of GIS. Based on the expert-novice continuum approach, this study focuses on two dimensions: a cognitive dimension, which explores and compares the way of thinking of experienced and novice users when solving site location problems with GIS; and on an instructional dimension, which identifies and integrate the expert methods in the resolution strategies of learners

    A New Geospatial Model Integrating a Fuzzy Rule-Based System in a GIS Platform to Partition a Complex Urban System in Homogeneous Urban Contexts

    Get PDF
    Here, we present a new unsupervised method aimed at obtaining a partition of a complex urbansysteminhomogenousurbanareas,calledurbancontexts.Ourmodelintegratesspatialanalysis processes and a fuzzy rule-based system applied to manage the knowledge of domain experts; it is implemented using a GIS platform. The area of study is initially partitioned in microzones, homogeneous portions of the urban system, which are the atomic reference elements for the census data. With the contribution of domain experts, we identify the physical, morphological, environmental, and socio-economic indicators needed to identify synthetic characteristics of urban contexts and create the fuzzy rule set necessary for determining the type of urban context. We implement the set of spatial analysis processes required to calculate the indicators for the microzones and apply a Mamdani fuzzy rule system to classify the microzones. Finally, the partition of the area of study in urban contexts is obtained by dissolving continuous microzones belonging to the same type of urban context. Tests are performed on the Municipality of Pozzuoli (Naples, Italy); the reliability of the out model is measured by comparing the results with the ones obtained through a detailed analysis

    Bridging the Gap Between Traditional Metadata and the Requirements of an Academic SDI for Interdisciplinary Research

    Get PDF
    Metadata has long been understood as a fundamental component of any Spatial Data Infrastructure, providing information relating to discovery, evaluation and use of datasets and describing their quality. Having good metadata about a dataset is fundamental to using it correctly and to understanding the implications of issues such as missing data or incorrect attribution on the results obtained for any analysis carried out. Traditionally, spatial data was created by expert users (e.g. national mapping agencies), who created metadata for the data. Increasingly, however, data used in spatial analysis comes from multiple sources and could be captured or used by nonexpert users – for example academic researchers ‐ many of whom are from non‐GIS disciplinary backgrounds, not familiar with metadata and perhaps working in geographically dispersed teams. This paper examines the applicability of metadata in this academic context, using a multi‐national coastal/environmental project as a case study. The work to date highlights a number of suggestions for good practice, issues and research questions relevant to Academic SDI, particularly given the increased levels of research data sharing and reuse required by UK and EU funders

    Empiricism and stochastics in cellular automaton modeling of urban land use dynamics

    Get PDF
    An increasing number of models for predicting land use change in regions of rapidurbanization are being proposed and built using ideas from cellular automata (CA)theory. Calibrating such models to real situations is highly problematic and to date,serious attention has not been focused on the estimation problem. In this paper, wepropose a structure for simulating urban change based on estimating land usetransitions using elementary probabilistic methods which draw their inspiration fromBayes' theory and the related ?weights of evidence? approach. These land use changeprobabilities drive a CA model ? DINAMICA ? conceived at the Center for RemoteSensing of the Federal University of Minas Gerais (CSR-UFMG). This is based on aneight cell Moore neighborhood approach implemented through empirical land useallocation algorithms. The model framework has been applied to a medium-size townin the west of São Paulo State, Bauru. We show how various socio-economic andinfrastructural factors can be combined using the weights of evidence approach whichenables us to predict the probability of changes between land use types in differentcells of the system. Different predictions for the town during the period 1979-1988were generated, and statistical validation was then conducted using a multipleresolution fitting procedure. These modeling experiments support the essential logicof adopting Bayesian empirical methods which synthesize various information aboutspatial infrastructure as the driver of urban land use change. This indicates therelevance of the approach for generating forecasts of growth for Brazilian citiesparticularly and for world-wide cities in general

    Customised display of large mineralogical (XRD) data: Geological advantages and applications

    Get PDF
    X-ray diffraction mineralogical analysis of geological sequences is a well-established procedure in both academia and industry, rendering a large volume of data in short-analytical time. Yet, standard data treatment and resulting interpretations present limitations related to the inherent complexities of natural geological materials (e.g. compositional variety, structural ordering), and are often time consuming and focussed on a very detailed inspection. Several alternatives were evaluated in terms of advantages and disadvantages to the main goal of generating a user-friendly, fast and intuitive way of processing a large volume of X-ray diffraction data. The potential of using raw X-ray diffraction data to interpret mineralogical diversity and relative phase abundances along sedimentary successions is explored here. A Python based program was tailored to assist in raw data organisation. After this automated step, a 3D surface computation renders the final result within minutes. This single-image representation can also be integrated with complementary information (sedimentary logs or other features of interest) for contrast and/or comparison in multi-proxy studies. The proposed approach was tested on a set of 81 bulk and clay-fraction diffractograms (intensity in counts per second—cps and respective angle—º2Ɵ) obtained from a Cenomanian mixed carbonate–siliciclastic stratigraphic succession, here explored by combining mineralogical (XY) and stratigraphic/geological information (Z). The main goal is to bypass preliminary data treatment, avoid time-consuming interpretation and unintended, but common, user-induced bias. Advantages of 3D modelling include fast processing and single-image solutions for large volumes of XRD data, combining mineralogical and stratigraphic information. This representation adds value by incorporating field (stratigraphic/sedimentological) information that complements and contextualises obtained mineralogical data. Limitations of using raw intensity data were evaluated by comparison with the results obtained via other standard data interpretation methods (e.g. semi-quantitative estimation). A visual and statistical contrast comparison confirmed a good equilibrium between computation speed and precision/utility of the final output. © 2022 The Authors. The Depositional Record published by John Wiley & Sons Ltd on behalf of International Association of Sedimentologists
    corecore