3 research outputs found

    Intelligent lighting system with the ability to control the color temperature and light flow of the illuminators

    Get PDF
    Modern lighting products allow the creation of intelligent control systems with the ability to adjust many parameters of lighting devices (for example, luminous flux, color temperature, light color, etc.). The presence on the market of relatively cheap lighting sensors (for illuminance, for color temperature, for light color, for movement, etc.) allows the monitoring of many parameters of the environment and, accordingly, more precise regulation of various parameters. The report presents a concept for the realization of an intelligent lighting system, which, depending on the external conditions of the environment, can regulate the parameters of an internal lighting system. Regulation is carried out according to external illumination, external color temperature, presence in the room, set algorithm of work, etc. Modern LED light sources with a variable color temperature and the possibility of dimming are planned to be used in the implementation of the system. A structural diagram of such a system, the element base and the control algorithm is presented

    Adaptive-predictive control strategy for HVAC systems in smart buildings – A review

    Get PDF
    Abstract High share of energy consumption in buildings and subsequent increase in greenhouse gas emissions along with stricter legislations have motivated researchers to look for sustainable solutions in order to reduce energy consumption by using alternative renewable energy resources and improving the efficiency in this sector. Today, the smart building and socially resilient city concepts have been introduced where building automation technologies are implemented to manage and control the energy generation/consumption/storage. Building automation and control systems can be roughly classified into traditional and advanced control strategies. Traditional strategies are not a viable choice for more sophisticated features required in smart buildings. The main focus of this paper is to review advanced control strategies and their impact on buildings and technical systems with respect to energy/cost saving. These strategies should be predictive/responsive/adaptive against weather, user, grid and thermal mass. In this context, special attention is paid to model predictive control and adaptive control strategies. Although model predictive control is the most common type used in buildings, it is not well suited for systems consisting of uncertainties and unpredictable data. Thus, adaptive predictive control strategies are being developed to address these shortcomings. Despite great progress in this field, the quantified results of these strategies reported in literature showed a high level of inconsistency. This is due to the application of different control modes, various boundary conditions, hypotheses, fields of application, and type of energy consumption in different studies. Thus, this review assesses the implementations and configurations of advanced control solutions and highlights research gaps in this field that need further investigations

    Lux junior 2023: 16. Internationales Forum für den lichttechnischen Nachwuchs, 23. – 25. Juni 2023, Ilmenau : Tagungsband

    Get PDF
    Während des 16. Internationales Forums für den lichttechnischen Nachwuchs präsentieren Studenten, Doktoranden und junge Absolventen ihre Forschungs- und Entwicklungsergebnisse aus allen Bereichen der Lichttechnik. Die Themen bewegen sich dabei von Beleuchtungsanwendungen in verschiedensten Bereichen über Lichtmesstechnik, Kraftfahrzeugbeleuchung, LED-Anwendung bis zu nichtvisuellen Lichtwirkungen. Das Forum ist speziell für Studierende und junge Absolventen des Lichtbereiches konzipiert. Es bietet neben den Vorträgen und Postern die Möglichkeit zu Diskussionen und individuellem Austausch. In den 30 Jahren ihres Bestehens entwickelte sich die zweijährig stattfindende Tagung zu eine Traditionsveranstaltung, die das Fachgebiet Lichttechnik der TU Ilmenau gemeinsam mit der Bezirksgruppe Thüringen-Nordhessen der Deutschen Lichttechnischen Gesellschaft LiTG e. V. durchführt
    corecore