817 research outputs found

    Reciprocal Recommender System for Learners in Massive Open Online Courses (MOOCs)

    Get PDF
    Massive open online courses (MOOC) describe platforms where users with completely different backgrounds subscribe to various courses on offer. MOOC forums and discussion boards offer learners a medium to communicate with each other and maximize their learning outcomes. However, oftentimes learners are hesitant to approach each other for different reasons (being shy, don't know the right match, etc.). In this paper, we propose a reciprocal recommender system which matches learners who are mutually interested in, and likely to communicate with each other based on their profile attributes like age, location, gender, qualification, interests, etc. We test our algorithm on data sampled using the publicly available MITx-Harvardx dataset and demonstrate that both attribute importance and reciprocity play an important role in forming the final recommendation list of learners. Our approach provides promising results for such a system to be implemented within an actual MOOC.Comment: 10 pages, accepted as full paper @ ICWL 201

    A review on massive e-learning (MOOC) design, delivery and assessment

    Get PDF
    MOOCs or Massive Online Open Courses based on Open Educational Resources (OER) might be one of the most versatile ways to offer access to quality education, especially for those residing in far or disadvantaged areas. This article analyzes the state of the art on MOOCs, exploring open research questions and setting interesting topics and goals for further research. Finally, it proposes a framework that includes the use of software agents with the aim to improve and personalize management, delivery, efficiency and evaluation of massive online courses on an individual level basis.Peer ReviewedPostprint (author's final draft

    The Case for Graph-Based Recommendations

    Get PDF
    Recommender systems have been intensively used to create personalised profiles, which enhance the user experience. In certain areas, such as e-learning, this approach is short-sighted, since each student masters each concept through different means. The progress from one concept to the next, or from one lesson to another, does not necessarily follow a fixed pattern. Given these settings, we can no longer use simple structures (vectors, strings, etc.) to represent each user's interactions with the system, because the sequence of events and their mapping to user's intentions, build up into more complex synergies. As a consequence, we propose a graph-based interpretation of the problem and identify the challenges behind (a) using graphs to model the users' journeys and hence as the input to the recommender system, and (b) producing recommendations in the form of graphs of actions to be taken

    Effects of Automated Interventions in Programming Assignments: Evidence from a Field Experiment

    Full text link
    A typical problem in MOOCs is the missing opportunity for course conductors to individually support students in overcoming their problems and misconceptions. This paper presents the results of automatically intervening on struggling students during programming exercises and offering peer feedback and tailored bonus exercises. To improve learning success, we do not want to abolish instructionally desired trial and error but reduce extensive struggle and demotivation. Therefore, we developed adaptive automatic just-in-time interventions to encourage students to ask for help if they require considerably more than average working time to solve an exercise. Additionally, we offered students bonus exercises tailored for their individual weaknesses. The approach was evaluated within a live course with over 5,000 active students via a survey and metrics gathered alongside. Results show that we can increase the call outs for help by up to 66% and lower the dwelling time until issuing action. Learnings from the experiments can further be used to pinpoint course material to be improved and tailor content to be audience specific.Comment: 10 page

    Accessible user profile modeling for academic services based on MOOCs

    Get PDF
    MOOCs are examples of the evolution of eLearning environments, it is a fact that the flexibility of the learning services allows students to learn at their own time, place and pace, enhances continuous communication and interaction between all participants in knowledge and community building, benefits people with disabilities and therefore can improve their level of employability and social inclusion. MOOCs are leading a revolutionary computer and mobile-based scenario along with social technologies that will emergence new kinds of learning applications that enhance communication and collaboration processes, for that reason a strategy of the use of metadata regarding the achievement of accessibility from content to user preferences is presented in this paper, in order to achieve a better accessibility level while designing new learning services for people with functional diversity based upon MOOCs

    Applying UDL Principles in an Inclusive Design Project Based on MOOCs Reviews

    Get PDF
    The wide-scale adoption of Massive Open Online Courses (MOOCs) comes with learners that have variable needs. While MOOCs may be attracting a wide range of learners, there is a need to provide those learners with a means to evaluate what is working in MOOCs and what areas of learning design can be improved. While learners may have compliments and criticisms of course designs, there is a need to organize feedback from such a wide range of participants into a coherent and actionable structure. This chapter describes the YourMOOC4all project, which offers the possibility for any learner to freely judge and provide feedback on the design of MOOCs in accordance with how it meets learner needs and Universal Design for Learning (UDL) principles. This kind of user feedback can be of great value for the future development of MOOC platforms, courses, and associated educational resources. YourMOOC4all gathers valuable information directly from the learners themselves to improve aspects such as the educational quality, accessibility, and usability of the learning environment

    YourMOOC4all: a recommender system for MOOCs based on collaborative filtering implementing UDL

    Get PDF
    YourMOOC4all is a pilot research project to collect feedback requests regarding accessible design for Massive Open Online Courses (MOOCs). In this online application, a specific website offers the possibility for any learner to freely judge if a particular MOOC complies Universal Design for Learning (UDL) principles. User feedback is of great value for the future development of MOOC platforms and MOOC educational resources, as it will help to follow De-sign for All guidelines. YourMOOC4all is a recommender system which gathers valuable information directly from learners to improve aspects such as the quality, accessibility and usability of this online learning environment. The final objective of collecting user’s feedback is to advice MOOC providers about the missing means for meeting learner needs. This paper describes the pedagogical and technological background of YourMOOC4all and its use cases

    Toward a New Framework of Recommender Memory Based System for MOOCs

    Get PDF
    MOOCs is the new wave of remote learning that has revolutionized it since its apparition, offering the possibility to teach a very big group of student, at the same time, in the same course, within all disciplines and without even gathering them in the same geographic location, or at the same time; Allowing the sharing of all type of media and document and providing tools to assessing student performance. To benefit from all this advantages, big universities are investing in MOOCs platforms to valorize their approach, which makes MOOC available in a multitude of languages and variety of disciplines. Elite universities have open their doors to student around the world without requesting tuition or claiming a college degree, however even with the major effort reaching to maximize students visits and hooking visitors to the platform, using recommending systems propose content likely to please learners, the dropout rate still very high and the number of users completing a course remains very low compared to those who have quit. In this paper we propose an architecture aiming to maximize users visits by exploiting users big data and combining it with data available from social networks
    corecore