1,492 research outputs found

    BPEmb: Tokenization-free Pre-trained Subword Embeddings in 275 Languages

    Full text link
    We present BPEmb, a collection of pre-trained subword unit embeddings in 275 languages, based on Byte-Pair Encoding (BPE). In an evaluation using fine-grained entity typing as testbed, BPEmb performs competitively, and for some languages bet- ter than alternative subword approaches, while requiring vastly fewer resources and no tokenization. BPEmb is available at https://github.com/bheinzerling/bpem

    Comparing Fifty Natural Languages and Twelve Genetic Languages Using Word Embedding Language Divergence (WELD) as a Quantitative Measure of Language Distance

    Full text link
    We introduce a new measure of distance between languages based on word embedding, called word embedding language divergence (WELD). WELD is defined as divergence between unified similarity distribution of words between languages. Using such a measure, we perform language comparison for fifty natural languages and twelve genetic languages. Our natural language dataset is a collection of sentence-aligned parallel corpora from bible translations for fifty languages spanning a variety of language families. Although we use parallel corpora, which guarantees having the same content in all languages, interestingly in many cases languages within the same family cluster together. In addition to natural languages, we perform language comparison for the coding regions in the genomes of 12 different organisms (4 plants, 6 animals, and two human subjects). Our result confirms a significant high-level difference in the genetic language model of humans/animals versus plants. The proposed method is a step toward defining a quantitative measure of similarity between languages, with applications in languages classification, genre identification, dialect identification, and evaluation of translations

    Hierarchical Character-Word Models for Language Identification

    Full text link
    Social media messages' brevity and unconventional spelling pose a challenge to language identification. We introduce a hierarchical model that learns character and contextualized word-level representations for language identification. Our method performs well against strong base- lines, and can also reveal code-switching

    MiLMo:Minority Multilingual Pre-trained Language Model

    Full text link
    Pre-trained language models are trained on large-scale unsupervised data, and they can fine-turn the model only on small-scale labeled datasets, and achieve good results. Multilingual pre-trained language models can be trained on multiple languages, and the model can understand multiple languages at the same time. At present, the search on pre-trained models mainly focuses on rich resources, while there is relatively little research on low-resource languages such as minority languages, and the public multilingual pre-trained language model can not work well for minority languages. Therefore, this paper constructs a multilingual pre-trained model named MiLMo that performs better on minority language tasks, including Mongolian, Tibetan, Uyghur, Kazakh and Korean. To solve the problem of scarcity of datasets on minority languages and verify the effectiveness of the MiLMo model, this paper constructs a minority multilingual text classification dataset named MiTC, and trains a word2vec model for each language. By comparing the word2vec model and the pre-trained model in the text classification task, this paper provides an optimal scheme for the downstream task research of minority languages. The final experimental results show that the performance of the pre-trained model is better than that of the word2vec model, and it has achieved the best results in minority multilingual text classification. The multilingual pre-trained model MiLMo, multilingual word2vec model and multilingual text classification dataset MiTC are published on http://milmo.cmli-nlp.com/

    First Attempt at Building Parallel Corpora for Machine Translation of Northeast India's Very Low-Resource Languages

    Full text link
    This paper presents the creation of initial bilingual corpora for thirteen very low-resource languages of India, all from Northeast India. It also presents the results of initial translation efforts in these languages. It creates the first-ever parallel corpora for these languages and provides initial benchmark neural machine translation results for these languages. We intend to extend these corpora to include a large number of low-resource Indian languages and integrate the effort with our prior work with African and American-Indian languages to create corpora covering a large number of languages from across the world.Comment: Accepted to ICON 202
    corecore