6,338 research outputs found

    Security of 5G-V2X: Technologies, Standardization and Research Directions

    Full text link
    Cellular-Vehicle to Everything (C-V2X) aims at resolving issues pertaining to the traditional usability of Vehicle to Infrastructure (V2I) and Vehicle to Vehicle (V2V) networking. Specifically, C-V2X lowers the number of entities involved in vehicular communications and allows the inclusion of cellular-security solutions to be applied to V2X. For this, the evolvement of LTE-V2X is revolutionary, but it fails to handle the demands of high throughput, ultra-high reliability, and ultra-low latency alongside its security mechanisms. To counter this, 5G-V2X is considered as an integral solution, which not only resolves the issues related to LTE-V2X but also provides a function-based network setup. Several reports have been given for the security of 5G, but none of them primarily focuses on the security of 5G-V2X. This article provides a detailed overview of 5G-V2X with a security-based comparison to LTE-V2X. A novel Security Reflex Function (SRF)-based architecture is proposed and several research challenges are presented related to the security of 5G-V2X. Furthermore, the article lays out requirements of Ultra-Dense and Ultra-Secure (UD-US) transmissions necessary for 5G-V2X.Comment: 9 pages, 6 figures, Preprin

    Cyber Security of Traffic Signal Control Systems with Connected Vehicles

    Full text link
    Our world is becoming increasingly connected through smart technologies. The same trend is emerging in transportation systems, wherein connected vehicles (CVs) and transportation infrastructure are being connected through advanced wireless communication technologies. CVs have great potential to improve a variety of mobility applications, including traffic signal control (TSC), a critical component in urban traffic operations. CV-based TSC (CV-TSC) systems use trajectory data to make more informed control decisions, therefore can accommodate real-time traffic fluctuations more efficiently. However, vehicle-infrastructure connectivity opens new doors to potential cyber attacks. Malicious attackers can potentially send falsified trajectory data to CV-TSC systems and influence signal control decisions. The benefit of CV-TSC systems can be realized only if the systems are secure in cyberspace. Although many CV-TSC systems have been developed within the past decade, few consider cyber security in their system design. It remains unclear exactly how vulnerable CV-TSC systems are, how cyber attacks may be perpetrated, and how engineers can mitigate cyber attacks and protect CV-TSC systems. Therefore, this dissertation aims to systematically understand the cyber security problems facing CV-TSC systems under falsified data attacks and provide a countermeasure to safeguard CV-TSC systems. These objectives are accomplished through four studies. The first study evaluates the effects of falsified data attacks on TSC systems. Two TSC systems are considered: a conventional actuated TSC system and an adaptive CV-TSC system. Falsified data attacks are assumed to change the input data to these systems and therefore influence control decisions. Numerical examples show that both systems are vulnerable to falsified data attacks. The second study investigates how falsified data attacks may be perpetrated in a realistic setting. Different from prior research, this study considers a more realistic but challenging black-box attack scenario, in which the signal control model is unavailable to the attacker. Under this constraint, the attacker has to learn the signal control model using a surrogate model. The surrogate model predicts signal timing plans based on critical traffic features extracted from CV data. The attacker can generate falsified CV data (i.e., falsified vehicle trajectories) to alter the values of critical traffic features and thus influence signal control decisions. In the third study, a data-driven method is proposed to protect CV-TSC systems from falsified data attacks. Falsified trajectories are behaviorally distinct from normal trajectories because they must accomplish a certain attack goal; thus, the problem of identifying falsified trajectories is considered an abnormal trajectory identification problem. A trajectory-embedding model is developed to generate vector representations of trajectory data. The similarity (distance) between each pair of trajectories can be computed based on these vector representations. Hierarchical clustering is then applied to identify abnormal (i.e., falsified) trajectories. In the final study, a testing platform is built upon a virtual traffic simulator and real-world transportation infrastructure in Mcity. The testing platform integrates the attack study and defense study in a unified framework and is used to evaluate the real-world impact of cyber attacks on CV-TSC systems and the effectiveness of defense strategies.PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162931/1/edhuang_1.pd

    Integrated health monitoring and controls for rocket engines

    Get PDF
    Current research in intelligent control systems at the Lewis Research Center is described in the context of a functional framework. The framework is applicable to a variety of reusable space propulsion systems for existing and future launch vehicles. It provides a 'road map' technology development to enable enhanced engine performance with increased reliability, durability, and maintainability. The framework hierarchy consists of a mission coordination level, a propulsion system coordination level, and an engine control level. Each level is described in the context of the Space Shuttle Main Engine. The concept of integrating diagnostics with control is discussed within the context of the functional framework. A distributed real time simulation testbed is used to realize and evaluate the functionalities in closed loop

    A Framework to Develop Anomaly Detection/Fault Isolation Architecture Using System Engineering Principles

    Get PDF
    For critical systems, timely recognition of an anomalous condition immediately starts the evaluation process. For complex systems, isolating the fault to a component or subsystem results in corrective action sooner so that undesired consequences may be minimized. There are many unique anomaly detection and fault isolation capabilities available with innovative techniques to quickly discover an issue and identify the underlying problems. This research develops a framework to aid in the selection of appropriate anomaly detection and fault isolation technology to augment a given system. To optimize this process, the framework employs a model based systems engineering approach. Specifically, a SysML model is generated that enables a system-level evaluation of alternative detection and isolation techniques, and subsequently identifies the preferable application(s) from these technologies A case study is conducted on a cryogenic liquid hydrogen system that was used to fuel the Space Shuttles at the Kennedy Space Center, Florida (and will be used to fuel the next generation Space Launch System rocket). This system is operated remotely and supports time-critical and highly hazardous operations making it a good candidate to augment with this technology. As the process depicted by the framework down-selects to potential applications for consideration, these too are tested in their ability to achieve required goals

    Space shuttle avionics system

    Get PDF
    The Space Shuttle avionics system, which was conceived in the early 1970's and became operational in the 1980's represents a significant advancement of avionics system technology in the areas of systems and redundacy management, digital data base technology, flight software, flight control integration, digital fly-by-wire technology, crew display interface, and operational concepts. The origins and the evolution of the system are traced; the requirements, the constraints, and other factors which led to the final configuration are outlined; and the functional operation of the system is described. An overall system block diagram is included

    Advancing automation and robotics technology for the Space Station Freedom and for the US economy

    Get PDF
    The progress made by levels 1, 2, and 3 of the Office of Space Station in developing and applying advanced automation and robotics technology is described. Emphasis is placed upon the Space Station Freedom Program responses to specific recommendations made in the Advanced Technology Advisory Committee (ATAC) progress report 10, the flight telerobotic servicer, and the Advanced Development Program. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for the Space Station Freedom
    • …
    corecore