1,786 research outputs found

    A vision-based system for inspecting painted slates

    Get PDF
    Purpose – This paper describes the development of a novel automated vision system used to detect the visual defects on painted slates. Design/methodology/approach – The vision system that has been developed consists of two major components covering the opto-mechanical and algorithmical aspects of the system. The first component addresses issues including the mechanical implementation and interfacing the inspection system with the development of a fast image processing procedure able to identify visual defects present on the slate surface. Findings – The inspection system was developed on 400 slates to determine the threshold settings that give the best trade-off between no false positive triggers and correct defect identification. The developed system was tested on more than 300 fresh slates and the success rate for correct identification of acceptable and defective slates was 99.32 per cent for defect free slates based on 148 samples and 96.91 per cent for defective slates based on 162 samples. Practical implications – The experimental data indicates that automating the inspection of painted slates can be achieved and installation in a factory is a realistic target. Testing the devised inspection system in a factory-type environment was an important part of the development process as this enabled us to develop the mechanical system and the image processing algorithm able to perform slate inspection in an industrial environment. The overall performance of the system indicates that the proposed solution can be considered as a replacement for the existing manual inspection system. Originality/value – The development of a real-time automated system for inspecting painted slates proved to be a difficult task since the slate surface is dark coloured, glossy, has depth profile non-uniformities and is being transported at high speeds on a conveyor. In order to address these issues, the system described in this paper proposed a number of novel solutions including the illumination set-up and the development of multi-component image-processing inspection algorithm

    Automatic Defect Detection and Classification Technique from Image Processing

    Get PDF
    Image processing is one of the most increasing areas in computer science. As technology advances, the analog imaging is switched to the digital system. Every day, we capture huge amount of images which are very difficult to maintain manually within a certain period of time. So the concept and application of the digital imaging grows rapidly. Digital image processing[7] is used to extract various features from images. This is done by computers automatically without or with little human intervention. One of the most important operations on digital image[2] is to identify and classify various kinds of defects. Thus to detect the defects from any image some methods are developed. In this paper a defect detection method for ceramic tiles is proposed. The proposed method is tested for images with resolution 1920×1080 pixels. The method has tested only for defects such as blobs and cracks

    A real-time defect detection in printed circuit boards applying deep learning

    Get PDF
    Inspection of defects in the printed circuit boards (PCBs) has both safety and economic significance in the 4.0 industrial manufacturing. Nevertheless, it is still a challenging problem to be studied in-depth due to the complexity of the PCB layouts and the shrinking down tendency of the electronic component size. In this paper, a real-time automated supervision algorithm is proposed to test the PCBs quality among different scenarios. The density of the PCBs layout and the complexity on the surface are analyzed based on deep learning and image feature extraction algorithms. To be more detailed, the ORB feature and the Brute-force matching method are utilized to match perfectly the input images with the PCB templates. After transferring images by aiding the RANSAC algorithm, a hybrid method using modern computer vision algorithms is developed to segment defective areas on the PCBs surface. Then, by applying the enhanced Residual Network –50, the proposed algorithm can classify the groove defects on the surface mount technology electronic components which minimum size up to 1x3 mm. After the training process, the proposed system is capable to categorize various types of overproduced, recycled, and cloned PCBs. The speed of the quality testing operation maintains at a high level with an average precision rate up to 96.29 % in case of good brightness conditions. Finally, the computational experiments demonstrate that the proposed system based on deep learning can obtain superior results and it outperforms several existing works in terms of speed, precision, and robustnes

    Automated Quality Control in Manufacturing Production Lines: A Robust Technique to Perform Product Quality Inspection

    Get PDF
    Quality control (QC) in manufacturing processes is critical to ensuring consumers receive products with proper functionality and reliability. Faulty products can lead to additional costs for the manufacturer and damage trust in a brand. A growing trend in QC is the use of machine vision (MV) systems because of their noncontact inspection, high repeatability, and efficiency. This thesis presents a robust MV system developed to perform comparative dimensional inspection on diversely shaped samples. Perimeter, area, rectangularity, and circularity are determined in the dimensional inspection algorithm for a base item and test items. A score determined with the four obtained parameter values provides the likeness between the base item and a test item. Additionally, a surface defect inspection is offered capable of identifying scratches, dents, and markings. The dimensional and surface inspections are used in a QC industrial case study. The case study examines the existing QC system for an electric motor manufacturer and proposes the developed QC system to increase product inspection count and efficiency while maintaining accuracy and reliability. Finally, the QC system is integrated in a simulated product inspection line consisting of a robotic arm and conveyor belts. The simulated product inspection line could identify the correct defect in all tested items and demonstrated the system’s automation capabilities

    Design Of Crack Detection System Software For IC Package Using Blob Analysis And Neural Network.

    Get PDF
    In this research, three methods for the detection of crack defects on integrated circuit (IC) packages are proposed. These methods use blob analysis technique in image processing stage, and use multi-layered perceptron (MLP) neural network to classify the IC package

    An Extended Review on Fabric Defects and Its Detection Techniques

    Get PDF
    In Textile Industry, Quality of the Fabric is the main important factor. At the initial stage, it is very essential to identify and avoid the fabrics faults/defects and hence human perception consumes lot of time and cost to reveal the fabrics faults. Now-a-days Automated Inspection Systems are very useful to decrease the fault prediction time and gives best visualizing clarity- based on computer vision and image processing techniques. This paper made an extended review about the quality parameters in the fiber-to-fabric process, fabrics defects detection terminologies applied on major three clusters of fabric defects knitting, woven and sewing fabric defects. And this paper also explains about the statistical performance measures which are used to analyze the defect detection process. Also, comparison among the methods proposed in the field of fabric defect detection

    A Multi-Level Colour Thresholding Based Segmentation Approach for Improved Identification of the Defective Region in Leather Surfaces

    Get PDF
    Vision systems are recently adopted for defect detection in leather surface to overcome difficulties of labour intensive, time consuming manual inspection process. Suitable image processing techniques needs to be developed for accurate detection of leather defects. Existing research works have focused for gray scale based image processing techniques which requires conversion of colour images using an averaging method and it lacks sensitivity for detecting the leather defects due to the random and texture surface of the leather.  This work presents a colour processing approach for improved identification of leather defects using a multi-level thresholding function. In this work, the colour leather images are processed in ‘Lab’ colour domain for improving the human perception of discriminating the leather defects.  In the present work, the specific range of values for the colour attributes of different leather defect in colour leather samples are identified using the colour histogram.  MATLAB software routine is developed for identifying defects in specific ranges of colour attributes and the results are presented.  From the results, it is found that proposed provides a simpler approach for identifying the defective regions based on the colour attributes of the surface with improved human perception. The proposed methodology can be implemented in graphical processing units for efficiently detecting several types of defects using specific thresholds for the automated real-time inspection of leather defects

    Anomaly Detection in Automated Fibre Placement: Learning with Data Limitations

    Full text link
    Conventional defect detection systems in Automated Fibre Placement (AFP) typically rely on end-to-end supervised learning, necessitating a substantial number of labelled defective samples for effective training. However, the scarcity of such labelled data poses a challenge. To overcome this limitation, we present a comprehensive framework for defect detection and localization in Automated Fibre Placement. Our approach combines unsupervised deep learning and classical computer vision algorithms, eliminating the need for labelled data or manufacturing defect samples. It efficiently detects various surface issues while requiring fewer images of composite parts for training. Our framework employs an innovative sample extraction method leveraging AFP's inherent symmetry to expand the dataset. By inputting a depth map of the fibre layup surface, we extract local samples aligned with each composite strip (tow). These samples are processed through an autoencoder, trained on normal samples for precise reconstructions, highlighting anomalies through reconstruction errors. Aggregated values form an anomaly map for insightful visualization. The framework employs blob detection on this map to locate manufacturing defects. The experimental findings reveal that despite training the autoencoder with a limited number of images, our proposed method exhibits satisfactory detection accuracy and accurately identifies defect locations. Our framework demonstrates comparable performance to existing methods, while also offering the advantage of detecting all types of anomalies without relying on an extensive labelled dataset of defects
    corecore