82 research outputs found

    2020 NASA Technology Taxonomy

    Get PDF
    This document is an update (new photos used) of the PDF version of the 2020 NASA Technology Taxonomy that will be available to download on the OCT Public Website. The updated 2020 NASA Technology Taxonomy, or "technology dictionary", uses a technology discipline based approach that realigns like-technologies independent of their application within the NASA mission portfolio. This tool is meant to serve as a common technology discipline-based communication tool across the agency and with its partners in other government agencies, academia, industry, and across the world

    The NASA SBIR product catalog

    Get PDF
    The purpose of this catalog is to assist small business firms in making the community aware of products emerging from their efforts in the Small Business Innovation Research (SBIR) program. It contains descriptions of some products that have advanced into Phase 3 and others that are identified as prospective products. Both lists of products in this catalog are based on information supplied by NASA SBIR contractors in responding to an invitation to be represented in this document. Generally, all products suggested by the small firms were included in order to meet the goals of information exchange for SBIR results. Of the 444 SBIR contractors NASA queried, 137 provided information on 219 products. The catalog presents the product information in the technology areas listed in the table of contents. Within each area, the products are listed in alphabetical order by product name and are given identifying numbers. Also included is an alphabetical listing of the companies that have products described. This listing cross-references the product list and provides information on the business activity of each firm. In addition, there are three indexes: one a list of firms by states, one that lists the products according to NASA Centers that managed the SBIR projects, and one that lists the products by the relevant Technical Topics utilized in NASA's annual program solicitation under which each SBIR project was selected

    Preliminary study and design of the avionics system for an eVTOL aircraft.

    Get PDF
    The project consists of the study, creation, implementation, and development of the avionics system of an electric Vertical Take-Off and Landing (eVTOL) airplane for an ongoing project from the company ONAEROSPACE. The plane is intended to be for 7 passengers and 1 pilot, with a maximum range of 1000+ km. The fuselage will be formed of carbon fiber composite to reduce weight and it will use electric motors powered by batteries. The avionics system will provide the aircraft with communication and navigation systems, an autonomous Take-Off (T/O) and landing system, as well as the development of cockpit management systems. This document is divided into two parts. The first part begins with the study of all the necessary tools for communication and navigation systems. That means all compulsory antennas and sensors to obtain information about the surroundings (weather, obstacles, other planes¿). The intern communication network to send data from these sensors and antennas to main flight management systems is also studied in this first part. The second part of the project is dedicated to cabin cockpit systems and the study for the future development of autonomous systems. The cabin will have a full-glass cockpit, with touchable screens and an intelligent voice assistant. It will be very ergonomic and simple, with a lot of space in the cabin. In order to have an idea of the cost of the implementation of all the systems for the aircraft, a weight and cost estimation analysis are done at the end of each section. The last part of the project consists of the study of the design of a virtual intelligent voice assistant and the implementation of autonomous systems. Nowadays, the virtual intelligent voice assistant is an artificial intelligence system that works as a pilot monitoring system which assists the pilot in order to decrease the pilot¿s workload. The future idea is that the pilot could tell commands to the voice assistant and do nothing with the hands, just control that everything works correctly. Regarding the autonomous system, the conclusion is that with the existent technology is not possible today. Nevertheless, in the future, when fully autonomous aircraft are possible, the idea is that although being fully autonomous, the pilot can take the control of the aircraft at any moment.OutgoingObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i InfraestructuraObjectius de Desenvolupament Sostenible::11 - Ciutats i Comunitats Sostenible

    Air Force Institute of Technology Research Report 2009

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    Aeronautical Engineering: A continuing bibliography with indexes, supplement 174

    Get PDF
    This bibliography lists 466 reports, articles and other documents introduced into the NASA scientific and technical information system in April 1984

    C-Band Airport Surface Communications System Standards Development. Phase II Final Report. Volume 1: Concepts of Use, Initial System Requirements, Architecture, and AeroMACS Design Considerations

    Get PDF
    This report is provided as part of ITT s NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: New ATM Requirements-Future Communications, C-Band and L-Band Communications Standard Development and was based on direction provided by FAA project-level agreements for New ATM Requirements-Future Communications. Task 7 included two subtasks. Subtask 7-1 addressed C-band (5091- to 5150-MHz) airport surface data communications standards development, systems engineering, test bed and prototype development, and tests and demonstrations to establish operational capability for the Aeronautical Mobile Airport Communications System (AeroMACS). Subtask 7-2 focused on systems engineering and development support of the L-band digital aeronautical communications system (L-DACS). Subtask 7-1 consisted of two phases. Phase I included development of AeroMACS concepts of use, requirements, architecture, and initial high-level safety risk assessment. Phase II builds on Phase I results and is presented in two volumes. Volume I (this document) is devoted to concepts of use, system requirements, and architecture, including AeroMACS design considerations. Volume II describes an AeroMACS prototype evaluation and presents final AeroMACS recommendations. This report also describes airport categorization and channelization methodologies. The purposes of the airport categorization task were (1) to facilitate initial AeroMACS architecture designs and enable budgetary projections by creating a set of airport categories based on common airport characteristics and design objectives, and (2) to offer high-level guidance to potential AeroMACS technology and policy development sponsors and service providers. A channelization plan methodology was developed because a common global methodology is needed to assure seamless interoperability among diverse AeroMACS services potentially supplied by multiple service providers

    NASA SBIR abstracts of 1992, phase 1 projects

    Get PDF
    The objectives of 346 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1992 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 346, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1992 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included
    • …
    corecore