10,125,908 research outputs found
Ethnic minority business in the uk: a review of research and policy development
Part of a series produced to support a ESRC/CRE/DTI/emda workshop on ethnic minority entrepreneurship. This paper comprised a review of research literature on ethnic minority enterprise and an overview of UK policy developments
An immune system based genetic algorithm using permutation-based dualism for dynamic traveling salesman problems
Copyright @ Springer-Verlag Berlin Heidelberg 2009.In recent years, optimization in dynamic environments has attracted a growing interest from the genetic algorithm community due to the importance and practicability in real world applications. This paper proposes a new genetic algorithm, based on the inspiration from biological immune systems, to address dynamic traveling salesman problems. Within the proposed algorithm, a permutation-based dualism is introduced in the course of clone process to promote the population diversity. In addition, a memory-based vaccination scheme is presented to further improve its tracking ability in dynamic environments. The experimental results show that the proposed diversification and memory enhancement methods can greatly improve the adaptability of genetic algorithms for dynamic traveling salesman problems.This work was supported by the Key Program of National Natural Science Foundation (NNSF) of China under Grant No. 70431003 and Grant No. 70671020, the Science Fund for Creative Research Group of NNSF of China under GrantNo. 60521003, the National Science and Technology Support Plan of China under Grant No. 2006BAH02A09 and the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant No. EP/E060722/1
Population-based incremental learning with associative memory for dynamic environments
Copyright © 2007 IEEE. Reprinted from IEEE Transactions on Evolutionary Computation.
This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected].
By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In recent years there has been a growing interest in studying evolutionary algorithms (EAs) for dynamic optimization problems (DOPs) due to its importance in real world applications. Several approaches, such as the memory and multiple population schemes, have been developed for EAs to address dynamic problems. This paper investigates the application of the memory scheme for population-based incremental learning (PBIL) algorithms, a class of EAs, for DOPss. A PBIL-specific associative memory scheme, which stores best solutions as well as corresponding environmental information in the memory, is investigated to improve its adaptability in dynamic environments. In this paper, the interactions between the memory scheme and random immigrants, multi-population, and restart schemes for PBILs in dynamic environments are investigated. In order to better test the performance of memory schemes for PBILs and other EAs in dynamic environments, this paper also proposes a dynamic environment generator that can systematically generate dynamic environments of different difficulty with respect to memory schemes. Using this generator a series of dynamic environments are generated and experiments are carried out to compare the performance of investigated algorithms. The experimental results show that the proposed memory scheme is efficient for PBILs in dynamic environments and also indicate that different interactions exist between the memory scheme and random immigrants, multi-population schemes for PBILs in different dynamic environments
Fast multi-swarm optimization for dynamic optimization problems
This article is posted here with permission of IEEE - Copyright @ 2008 IEEEIn the real world, many applications are non-stationary optimization problems. This requires that the optimization algorithms need to not only find the global optimal solution but also track the trajectory of the changing global best solution in a dynamic environment. To achieve this, this paper proposes a multi-swarm algorithm based on fast particle swarm optimization for dynamic optimization problems. The algorithm employs a mechanism to track multiple peaks by preventing overcrowding at a peak and a fast particle swarm optimization algorithm as a local search method to find the near optimal solutions in a local promising region in the search space. The moving peaks benchmark function is used to test the performance of the proposed algorithm. The numerical experimental results show the efficiency of the proposed algorithm for dynamic optimization problems
Wearable performance
This is the post-print version of the article. The official published version can be accessed from the link below - Copyright @ 2009 Taylor & FrancisWearable computing devices worn on the body provide the potential for digital interaction in the world. A new stage of computing technology at the beginning of the 21st Century links the personal and the pervasive through mobile wearables. The convergence between the miniaturisation of microchips (nanotechnology), intelligent textile or interfacial materials production, advances in biotechnology and the growth of wireless, ubiquitous computing emphasises not only mobility but integration into clothing or the human body. In artistic contexts one expects such integrated wearable devices to have the two-way function of interface instruments (e.g. sensor data acquisition and exchange) worn for particular purposes, either for communication with the environment or various aesthetic and compositional expressions. 'Wearable performance' briefly surveys the context for wearables in the performance arts and distinguishes display and performative/interfacial garments. It then focuses on the authors' experiments with 'design in motion' and digital performance, examining prototyping at the DAP-Lab which involves transdisciplinary convergences between fashion and dance, interactive system architecture, electronic textiles, wearable technologies and digital animation. The concept of an 'evolving' garment design that is materialised (mobilised) in live performance between partners originates from DAP Lab's work with telepresence and distributed media addressing the 'connective tissues' and 'wearabilities' of projected bodies through a study of shared embodiment and perception/proprioception in the wearer (tactile sensory processing). Such notions of wearability are applied both to the immediate sensory processing on the performer's body and to the processing of the responsive, animate environment. Wearable computing devices worn on the body provide the potential for digital interaction in the world. A new stage of computing technology at the beginning of the 21st Century links the personal and the pervasive through mobile wearables. The convergence between the miniaturisation of microchips (nanotechnology), intelligent textile or interfacial materials production, advances in biotechnology and the growth of wireless, ubiquitous computing emphasises not only mobility but integration into clothing or the human body. In artistic contexts one expects such integrated wearable devices to have the two-way function of interface instruments (e.g. sensor data acquisition and exchange) worn for particular purposes, either for communication with the environment or various aesthetic and compositional expressions. 'Wearable performance' briefly surveys the context for wearables in the performance arts and distinguishes display and performative/interfacial garments. It then focuses on the authors' experiments with 'design in motion' and digital performance, examining prototyping at the DAP-Lab which involves transdisciplinary convergences between fashion and dance, interactive system architecture, electronic textiles, wearable technologies and digital animation. The concept of an 'evolving' garment design that is materialised (mobilised) in live performance between partners originates from DAP Lab's work with telepresence and distributed media addressing the 'connective tissues' and 'wearabilities' of projected bodies through a study of shared embodiment and perception/proprioception in the wearer (tactile sensory processing). Such notions of wearability are applied both to the immediate sensory processing on the performer's body and to the processing of the responsive, animate environment
A novel approach for quality control system using sensor fusion of infrared and visual image processing for laser sealing of food containers
This paper presents a new mechatronic approach of using infrared thermography combined with image processing for the quality control of a laser sealing process for food containers. The suggested approach uses an on-line infrared system to assess the heat distribution within the container seal in order to guarantee the integrity of the process. Visual image processing is then used for quality assurance to guarantee optimum sealing. The results described in this paper show examples of the capability of the condition monitoring system to detect faults in the sealing process. The results found indicate that the suggested approach could form an effective quality control and assurance system
Compound particle swarm optimization in dynamic environments
Copyright @ Springer-Verlag Berlin Heidelberg 2008.Adaptation to dynamic optimization problems is currently receiving a growing interest as one of the most important applications of evolutionary algorithms. In this paper, a compound particle swarm optimization (CPSO) is proposed as a new variant of particle swarm optimization to enhance its performance in dynamic environments. Within CPSO, compound particles are constructed as a novel type of particles in the search space and their motions are integrated into the swarm. A special reflection scheme is introduced in order to explore the search space more comprehensively. Furthermore, some information preserving and anti-convergence strategies are also developed to improve the performance of CPSO in a new environment. An experimental study shows the efficiency of CPSO in dynamic environments.This work was supported by the Key Program
of the National Natural Science Foundation (NNSF) of China under Grant No. 70431003 and Grant No. 70671020, the Science Fund for Creative Research Group of NNSF of China under Grant No. 60521003, the National Science and Technology Support Plan of China under Grant No. 2006BAH02A09 and the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant No. EP/E060722/1
A hybrid genetic algorithm and tabu search approach for post enrolment course timetabling
Copyright @ Springer Science + Business Media. All rights reserved.The post enrolment course timetabling problem (PECTP) is one type of university course timetabling problems, in which a set of events has to be scheduled in time slots and located in suitable rooms according to the student enrolment data. The PECTP is an NP-hard combinatorial optimisation problem and hence is very difficult to solve to optimality. This paper proposes a hybrid approach to solve the PECTP in two phases. In the first phase, a guided search genetic algorithm is applied to solve the PECTP. This guided search genetic algorithm, integrates a guided search strategy and some local search techniques, where the guided search strategy uses a data structure that stores useful information extracted from previous good individuals to guide the generation of offspring into the population and the local search techniques are used to improve the quality of individuals. In the second phase, a tabu search heuristic is further used on the best solution obtained by the first phase to improve the optimality of the solution if possible. The proposed hybrid approach is tested on a set of benchmark PECTPs taken from the international timetabling competition in comparison with a set of state-of-the-art methods from the literature. The experimental results show that the proposed hybrid approach is able to produce promising results for the test PECTPs.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01 and Grant EP/E060722/02
A guided search non-dominated sorting genetic algorithm for the multi-objective university course timetabling problem
Copyright @ Springer-Verlag Berlin Heidelberg 2011.The university course timetabling problem is a typical combinatorial optimization problem. This paper tackles the multi-objective university course timetabling problem (MOUCTP) and proposes a guided search non-dominated sorting genetic algorithm to solve the MOUCTP. The proposed algorithm integrates a guided search technique, which uses a memory to store useful information extracted from previous good solutions to guide the generation of new solutions, and two local search schemes to enhance its performance for the MOUCTP. The experimental results based on a set of test problems show that the proposed algorithm is efficient for solving the MOUCTP
Developing research support
A report on the RLUK project to map the information needs of researchers onto tasks to be undertaken by subject
librarians and other staff, now and in the future
- …
