294,410 research outputs found

    The correlation between wing kinematics and steering muscle activity in the blowfly Calliphora vicina

    Get PDF
    Determining how the motor patterns of the nervous system are converted into the mechanical and behavioral output of the body is a central goal in the study of locomotion. In the case of dipteran flight, a population of small steering muscles controls many of the subtle changes in wing kinematics that allow flies to maneuver rapidly. We filmed the wing motion of tethered Calliphora vicina at high speed and simultaneously recorded multi-channel electromyographic signals from some of the prominent steering muscles in order to correlate kinematics with muscle activity. Using this analysis, we found that the timing of each spike in the basalare muscles was strongly correlated with changes in the deviation of the stroke plane during the downstroke. The relationship was non-linear such that the magnitude of the kinematic response to each muscle spike decreased with increasing levels of stroke deviation. This result suggests that downstroke deviation is controlled in part via the mechanical summation of basalare activity. We also found that interactions among the basalares and muscles III2–III4 determine the maximum forward amplitude of the wingstroke. In addition, activity in muscle I1 appears to participate in a wingbeat gearing mechanism, as previously proposed. Using these results, we have been able to correlate changes in wing kinematics with alteration in the spike rate, firing phase and combinatorial activity of identified steering muscles

    Accurate Feature Extraction and Control Point Correction for Camera Calibration with a Mono-Plane Target

    Get PDF
    The paper addresses two problems related to 3D camera calibration using a single mono-plane calibration target with circular control marks. The first problem is how to compute accurately the locations of the features (ellipses) in images of the target. Since the structure of the control marks is known beforehand, we propose to use a shape-specific searching technique to find the optimal locations of the features. Our experiments have shown this technique generates more accurate feature locations than the state-of-the-art ellipse extraction methods. The second problem is how to refine the control mark locations with unknown manufacturing errors. We demonstrate in a case study, where the control marks are laser printed on a A4 paper, that the manufacturing errors of the control marks can be compensated to a good extent so that the remaining calibration errors are reduced significantly. 1

    Local Alignment of the BABAR Silicon Vertex Tracking Detector

    Full text link
    The BABAR Silicon Vertex Tracker (SVT) is a five-layer double-sided silicon detector designed to provide precise measurements of the position and direction of primary tracks, and to fully reconstruct low-momentum tracks produced in e+e- collisions at the PEP-II asymmetric collider at Stanford Linear Accelerator Center. This paper describes the design, implementation, performance, and validation of the local alignment procedure used to determine the relative positions and orientations of the 340 SVT wafers. This procedure uses a tuned mix of in-situ experimental data and complementary lab-bench measurements to control systematic distortions. Wafer positions and orientations are determined by minimizing a chisquared computed using these data for each wafer individually, iterating to account for between-wafer correlations. A correction for aplanar distortions of the silicon wafers is measured and applied. The net effect of residual mis-alignments on relevant physical variables is evaluated in special control samples. The BABAR data-sample collected between November 1999 and April 2008 is used in the study of the SVT stability.Comment: 21 pages, 20 figures, 3 tables, submitted to Nucl. Instrum. Meth.

    Space Place: Mapping the Watery Hills and Dales

    Get PDF
    This classroom activity explains how the Global Positioning System (GPS) satellites work to provide precise location information to positions on the ground, as well as to other satellites whose job is to map the surface of Earth. The activity is specifically tied to NASA's Jason-1 and Topex/Poseidon spacecraft in their mission to map ocean topography. In addition to the concepts of distance vs. time and triangulation, the article also introduces Doppler effect. The activity was originally published in Technology Teacher, a magazine published by the International Technology Education Association (ITEA). Educational levels: Middle school

    A Recipe for Symbolic Geometric Computing: Long Geometric Product, BREEFS and Clifford Factorization

    Full text link
    In symbolic computing, a major bottleneck is middle expression swell. Symbolic geometric computing based on invariant algebras can alleviate this difficulty. For example, the size of projective geometric computing based on bracket algebra can often be restrained to two terms, using final polynomials, area method, Cayley expansion, etc. This is the "binomial" feature of projective geometric computing in the language of bracket algebra. In this paper we report a stunning discovery in Euclidean geometric computing: the term preservation phenomenon. Input an expression in the language of Null Bracket Algebra (NBA), by the recipe we are to propose in this paper, the computing procedure can often be controlled to within the same number of terms as the input, through to the end. In particular, the conclusions of most Euclidean geometric theorems can be expressed by monomials in NBA, and the expression size in the proving procedure can often be controlled to within one term! Euclidean geometric computing can now be announced as having a "monomial" feature in the language of NBA. The recipe is composed of three parts: use long geometric product to represent and compute multiplicatively, use "BREEFS" to control the expression size locally, and use Clifford factorization for term reduction and transition from algebra to geometry. By the time this paper is being written, the recipe has been tested by 70+ examples from \cite{chou}, among which 30+ have monomial proofs. Among those outside the scope, the famous Miquel's five-circle theorem \cite{chou2}, whose analytic proof is straightforward but very difficult symbolic computing, is discovered to have a 3-termed elegant proof with the recipe

    Comprehensive translational assessment of human-induced pluripotent stem cell derived cardiomyocytes for evaluating drug-induced arrhythmias

    Get PDF
    Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) hold promise for assessment of drug-induced arrhythmias and are being considered for use under the comprehensive in vitro proarrhythmia assay (CiPA). We studied the effects of 26 drugs and 3 drug combinations on 2 commercially available iPSC-CM types using high-throughput voltage-sensitive dye and microelectrode-array assays being studied for the CiPA initiative and compared the results with clinical QT prolongation and torsade de pointes (TdP) risk. Concentration-dependent analysis comparing iPSC-CMs to clinical trial results demonstrated good correlation between drug-induced rate-corrected action potential duration and field potential duration (APDc and FPDc) prolongation and clinical trial QTc prolongation. Of 20 drugs studied that exhibit clinical QTc prolongation, 17 caused APDc prolongation (16 in Cor.4U and 13 in iCell cardiomyocytes) and 16 caused FPDc prolongation (16 in Cor.4U and 10 in iCell cardiomyocytes). Of 14 drugs that cause TdP, arrhythmias occurred with 10 drugs. Lack of arrhythmic beating in iPSC-CMs for the four remaining drugs could be due to differences in relative levels of expression of individual ion channels. iPSC-CMs responded consistently to human ether-a-go-go potassium channel blocking drugs (APD prolongation and arrhythmias) and calcium channel blocking drugs (APD shortening and prevention of arrhythmias), with a more variable response to late sodium current blocking drugs. Current results confirm the potential of iPSC-CMs for proarrhythmia prediction under CiPA, where iPSC-CM results would serve as a check to ion channel and in silico modeling prediction of proarrhythmic risk. A multi-site validation study is warranted

    Molecular motors robustly drive active gels to a critically connected state

    Full text link
    Living systems often exhibit internal driving: active, molecular processes drive nonequilibrium phenomena such as metabolism or migration. Active gels constitute a fascinating class of internally driven matter, where molecular motors exert localized stresses inside polymer networks. There is evidence that network crosslinking is required to allow motors to induce macroscopic contraction. Yet a quantitative understanding of how network connectivity enables contraction is lacking. Here we show experimentally that myosin motors contract crosslinked actin polymer networks to clusters with a scale-free size distribution. This critical behavior occurs over an unexpectedly broad range of crosslink concentrations. To understand this robustness, we develop a quantitative model of contractile networks that takes into account network restructuring: motors reduce connectivity by forcing crosslinks to unbind. Paradoxically, to coordinate global contractions, motor activity should be low. Otherwise, motors drive initially well-connected networks to a critical state where ruptures form across the entire network.Comment: Main text: 21 pages, 5 figures. Supplementary Information: 13 pages, 8 figure
    corecore