133 research outputs found

    A Factorization Machine Framework for Testing Bigram Embeddings in Knowledgebase Completion

    Get PDF
    Embedding-based Knowledge Base Completion models have so far mostly combined distributed representations of individual entities or relations to compute truth scores of missing links. Facts can however also be represented using pairwise embeddings, i.e. embeddings for pairs of entities and relations. In this paper we explore such bigram embeddings with a flexible Factorization Machine model and several ablations from it. We investigate the relevance of various bigram types on the fb15k237 dataset and find relative improvements compared to a compositional model.Comment: accepted for AKBC 2016 workshop, 6page

    Dependency Parsing with Dilated Iterated Graph CNNs

    Full text link
    Dependency parses are an effective way to inject linguistic knowledge into many downstream tasks, and many practitioners wish to efficiently parse sentences at scale. Recent advances in GPU hardware have enabled neural networks to achieve significant gains over the previous best models, these models still fail to leverage GPUs' capability for massive parallelism due to their requirement of sequential processing of the sentence. In response, we propose Dilated Iterated Graph Convolutional Neural Networks (DIG-CNNs) for graph-based dependency parsing, a graph convolutional architecture that allows for efficient end-to-end GPU parsing. In experiments on the English Penn TreeBank benchmark, we show that DIG-CNNs perform on par with some of the best neural network parsers.Comment: 2nd Workshop on Structured Prediction for Natural Language Processing (at EMNLP '17

    Using Pairwise Occurrence Information to Improve Knowledge Graph Completion on Large-Scale Datasets

    Get PDF
    Bilinear models such as DistMult and ComplEx are effective methods for knowledge graph (KG) completion. However, they require large batch sizes, which becomes a performance bottleneck when training on large scale datasets due to memory constraints. In this paper we use occurrences of entity-relation pairs in the dataset to construct a joint learning model and to increase the quality of sampled negatives during training. We show on three standard datasets that when these two techniques are combined, they give a significant improvement in performance, especially when the batch size and the number of generated negative examples are low relative to the size of the dataset. We then apply our techniques to a dataset containing 2 million entities and demonstrate that our model outperforms the baseline by 2.8% absolute on [email protected]: 8 pages, 3 figures, accepted at EMNLP 201

    Path Ranking with Attention to Type Hierarchies

    Full text link
    The objective of the knowledge base completion problem is to infer missing information from existing facts in a knowledge base. Prior work has demonstrated the effectiveness of path-ranking based methods, which solve the problem by discovering observable patterns in knowledge graphs, consisting of nodes representing entities and edges representing relations. However, these patterns either lack accuracy because they rely solely on relations or cannot easily generalize due to the direct use of specific entity information. We introduce Attentive Path Ranking, a novel path pattern representation that leverages type hierarchies of entities to both avoid ambiguity and maintain generalization. Then, we present an end-to-end trained attention-based RNN model to discover the new path patterns from data. Experiments conducted on benchmark knowledge base completion datasets WN18RR and FB15k-237 demonstrate that the proposed model outperforms existing methods on the fact prediction task by statistically significant margins of 26% and 10%, respectively. Furthermore, quantitative and qualitative analyses show that the path patterns balance between generalization and discrimination.Comment: Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20

    STransE: a novel embedding model of entities and relationships in knowledge bases

    Full text link
    Knowledge bases of real-world facts about entities and their relationships are useful resources for a variety of natural language processing tasks. However, because knowledge bases are typically incomplete, it is useful to be able to perform link prediction or knowledge base completion, i.e., predict whether a relationship not in the knowledge base is likely to be true. This paper combines insights from several previous link prediction models into a new embedding model STransE that represents each entity as a low-dimensional vector, and each relation by two matrices and a translation vector. STransE is a simple combination of the SE and TransE models, but it obtains better link prediction performance on two benchmark datasets than previous embedding models. Thus, STransE can serve as a new baseline for the more complex models in the link prediction task.Comment: V1: In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL HLT 2016. V2: Corrected citation to (Krompa{\ss} et al., 2015). V3: A revised version of our NAACL-HLT 2016 paper with additional experimental results and latest related wor
    • …
    corecore