12,139 research outputs found

    Spatial movement pattern recognition in soccer based on relative player movements

    Get PDF
    Knowledge of spatial movement patterns in soccer occurring on a regular basis can give a soccer coach, analyst or reporter insights in the playing style or tactics of a group of players or team. Furthermore, it can support a coach to better prepare for a soccer match by analysing (trained) movement patterns of both his own as well as opponent players. We explore the use of the Qualitative Trajectory Calculus (QTC), a spatiotemporal qualitative calculus describing the relative movement between objects, for spatial movement pattern recognition of players movements in soccer. The proposed method allows for the recognition of spatial movement patterns that occur on different parts of the field and/or at different spatial scales. Furthermore, the Levenshtein distance metric supports the recognition of similar movements that occur at different speeds and enables the comparison of movements that have different temporal lengths. We first present the basics of the calculus, and subsequently illustrate its applicability with a real soccer case. To that end, we present a situation where a user chooses the movements of two players during 20 seconds of a real soccer match of a 2016-2017 professional soccer competition as a reference fragment. Following a pattern matching procedure, we describe all other fragments with QTC and calculate their distance with the QTC representation of the reference fragment. The top-k most similar fragments of the same match are presented and validated by means of a duo-trio test. The analyses show the potential of QTC for spatial movement pattern recognition in soccer

    Modeling Temporal Dynamics and Spatial Configurations of Actions Using Two-Stream Recurrent Neural Networks

    Full text link
    Recently, skeleton based action recognition gains more popularity due to cost-effective depth sensors coupled with real-time skeleton estimation algorithms. Traditional approaches based on handcrafted features are limited to represent the complexity of motion patterns. Recent methods that use Recurrent Neural Networks (RNN) to handle raw skeletons only focus on the contextual dependency in the temporal domain and neglect the spatial configurations of articulated skeletons. In this paper, we propose a novel two-stream RNN architecture to model both temporal dynamics and spatial configurations for skeleton based action recognition. We explore two different structures for the temporal stream: stacked RNN and hierarchical RNN. Hierarchical RNN is designed according to human body kinematics. We also propose two effective methods to model the spatial structure by converting the spatial graph into a sequence of joints. To improve generalization of our model, we further exploit 3D transformation based data augmentation techniques including rotation and scaling transformation to transform the 3D coordinates of skeletons during training. Experiments on 3D action recognition benchmark datasets show that our method brings a considerable improvement for a variety of actions, i.e., generic actions, interaction activities and gestures.Comment: Accepted to IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 201
    • …
    corecore