22,723 research outputs found

    Central extensions of current groups in two dimensions

    Full text link
    In this paper we generalize some of these results for loop algebras and groups as well as for the Virasoro algebra to the two-dimensional case. We define and study a class of infinite dimensional complex Lie groups which are central extensions of the group of smooth maps from a two dimensional orientable surface without boundary to a simple complex Lie group G. These extensions naturally correspond to complex curves. The kernel of such an extension is the Jacobian of the curve. The study of the coadjoint action shows that its orbits are labelled by moduli of holomorphic principal G-bundles over the curve and can be described in the language of partial differential equations. In genus one it is also possible to describe the orbits as conjugacy classes of the twisted loop group, which leads to consideration of difference equations for holomorphic functions. This gives rise to a hope that the described groups should possess a counterpart of the rich representation theory that has been developed for loop groups. We also define a two-dimensional analogue of the Virasoro algebra associated with a complex curve. In genus one, a study of a complex analogue of Hill's operator yields a description of invariants of the coadjoint action of this Lie algebra. The answer turns out to be the same as in dimension one: the invariants coincide with those for the extended algebra of currents in sl(2).Comment: 17 page

    Definable equivalence relations and zeta functions of groups

    Full text link
    We prove that the theory of the pp-adics Qp{\mathbb Q}_p admits elimination of imaginaries provided we add a sort for GLn(Qp)/GLn(Zp){\rm GL}_n({\mathbb Q}_p)/{\rm GL}_n({\mathbb Z}_p) for each nn. We also prove that the elimination of imaginaries is uniform in pp. Using pp-adic and motivic integration, we deduce the uniform rationality of certain formal zeta functions arising from definable equivalence relations. This also yields analogous results for definable equivalence relations over local fields of positive characteristic. The appendix contains an alternative proof, using cell decomposition, of the rationality (for fixed pp) of these formal zeta functions that extends to the subanalytic context. As an application, we prove rationality and uniformity results for zeta functions obtained by counting twist isomorphism classes of irreducible representations of finitely generated nilpotent groups; these are analogous to similar results of Grunewald, Segal and Smith and of du Sautoy and Grunewald for subgroup zeta functions of finitely generated nilpotent groups.Comment: 89 pages. Various corrections and changes. To appear in J. Eur. Math. So

    The Landau electron problem on a cylinder

    Full text link
    We consider the quantum mechanics of an electron confined to move on an infinite cylinder in the presence of a uniform radial magnetic field. This problem is in certain ways very similar to the corresponding problem on the infinite plane. Unlike the plane however, the group of symmetries of the magnetic field, namely, rotations about the axis and the axial translations, is {\em not} realized by the quantum electron but only a subgroup comprising rotations and discrete translations along the axial direction, is. The basic step size of discrete translations is such that the flux through the `unit cylinder cell' is quantized in units of the flux quantum. The result is derived in two different ways: using the condition of projective realization of symmetry groups and using the more familiar approach of determining the symmetries of a given Hamiltonian.Comment: 26 pages, revtex file, no figures. In version 2, introduction is expanded to explain our approach and references are updated. Results and conclusions are unchange

    Algebraic conformal quantum field theory in perspective

    Full text link
    Conformal quantum field theory is reviewed in the perspective of Axiomatic, notably Algebraic QFT. This theory is particularly developped in two spacetime dimensions, where many rigorous constructions are possible, as well as some complete classifications. The structural insights, analytical methods and constructive tools are expected to be useful also for four-dimensional QFT.Comment: Review paper, 40 pages. v2: minor changes and references added, so as to match published versio

    From Operator Algebras to Superconformal Field Theory

    Full text link
    We make a review on the recent progress in the operator algebraic approach to (super)conformal field theory. We discuss representation theory, classification results, full and boundary conformal field theories, relations to supervertex operator algebras and Moonshine, connections to subfactor theory and noncommutative geometry

    The extension problem for partial Boolean structures in Quantum Mechanics

    Full text link
    Alternative partial Boolean structures, implicit in the discussion of classical representability of sets of quantum mechanical predictions, are characterized, with definite general conclusions on the equivalence of the approaches going back to Bell and Kochen-Specker. An algebraic approach is presented, allowing for a discussion of partial classical extension, amounting to reduction of the number of contexts, classical representability arising as a special case. As a result, known techniques are generalized and some of the associated computational difficulties overcome. The implications on the discussion of Boole-Bell inequalities are indicated.Comment: A number of misprints have been corrected and some terminology changed in order to avoid possible ambiguitie

    Higher Genus Affine Lie Algebras of Krichever -- Novikov Type

    Full text link
    Classical affine Lie algebras appear e.g. as symmetries of infinite dimensional integrable systems and are related to certain differential equations. They are central extensions of current algebras associated to finite-dimensional Lie algebras g. In geometric terms these current algebras might be described as Lie algebra valued meromorphic functions on the Riemann sphere with two possible poles. They carry a natural grading. In this talk the generalization to higher genus compact Riemann surfaces and more poles is reviewed. In case that the Lie algebra g is reductive (e.g. g is simple, semi-simple, abelian, ...) a complete classification of (almost-) graded central extensions is given. In particular, for g simple there exists a unique non-trivial (almost-)graded extension class. The considered algebras are related to difference equations, special functions and play a role in Conformal Field Theory.Comment: 9 pages, Talk presented at the International Conference on Difference Equations, Special Functions, and Applications, Munich, July 200
    • …
    corecore