43 research outputs found

    Rational certificates of positivity on compact semialgebraic sets

    Full text link
    Schm\"udgen's Theorem says that if a basic closed semialgebraic set K = {g_1 \geq 0, ..., g_s \geq 0} in R^n is compact, then any polynomial f which is strictly positive on K is in the preordering generated by the g_i's. Putinar's Theorem says that under a condition stronger than compactness, any f which is strictly positive on K is in the quadratic module generated by the g_i's. In this note we show that if the g_i's and the f have rational coefficients, then there is a representation of f in the preordering with sums of squares of polynomials over Q. We show that the same is true for Putinar's Theorem as long as we include among the generators a polynomial N - \sum X_i^2, N a natural number

    Practical polynomial optimization through positivity certificates with and without denominators

    Get PDF
    Les certificats de positivité ou Positivstellens"atze fournissent des représentations de polynômes positifs sur des ensembles semialgébriques de basiques, c'est-à-dire des ensembles définis par un nombre fini d'inégalités polynomiales. Le célèbre Positivstellensatz de Putinar stipule que tout polynôme positif sur un ensemble semialgébrique basique fermé SS peut être écrit comme une combinaison pondérée linéaire des polynômes décrivant SS, sous une certaine condition sur SS légèrement plus forte que la compacité. Lorsqu'il est écrit comme ceci, il devient évident que le polynôme est positif sur SS, et donc cette description alternative fournit un certificat de positivité sur SS. De plus, comme les poids polynomiaux impliqués dans le Positivstellensatz de Putinar sont des sommes de carrés (SOS), de tels certificats de positivité permettent de concevoir des relaxations convexes basées sur la programmation semidéfinie pour résoudre des problèmes d'optimisation polynomiale (POP) qui surviennent dans diverses applications réelles, par exemple dans la gestion des réseaux d'énergie et l'apprentissage automatique pour n'en citer que quelques unes. Développée à l'origine par Lasserre, la hiérarchie des relaxations semidéfinies basée sur le Positivstellensatz de Putinar est appelée la emph{hiérarchie Moment-SOS}. Dans cette thèse, nous proposons des méthodes d'optimisation polynomiale basées sur des certificats de positivité impliquant des poids SOS spécifiques, sans ou avec dénominateurs.Positivity certificates or Positivstellens"atze provide representations of polynomials positive on basic semialgebraic sets, i.e., sets defined by finitely many polynomial inequalities. The famous Putinar's Positivstellensatz states that every positive polynomial on a basic closed semialgebraic set SS can be written as a linear weighted combination of the polynomials describing SS, under a certain condition on SS slightly stronger than compactness. When written in this it becomes obvious that the polynomial is positive on SS, and therefore this alternative description provides a certificate of positivity on SS. Moreover, as the polynomial weights involved in Putinar's Positivstellensatz are sums of squares (SOS), such Positivity certificates enable to design convex relaxations based on semidefinite programming to solve polynomial optimization problems (POPs) that arise in various real-life applications, e.g., in management of energy networks and machine learning to cite a few. Originally developed by Lasserre, the hierarchy of semidefinite relaxations based on Putinar's Positivstellensatz is called the emph{Moment-SOS hierarchy}. In this thesis, we provide polynomial optimization methods based on positivity certificates involving specific SOS weights, without or with denominators

    Convergence of the Lasserre Hierarchy of SDP Relaxations for Convex Polynomial Programs without Compactness

    Full text link
    The Lasserre hierarchy of semidefinite programming (SDP) relaxations is an effective scheme for finding computationally feasible SDP approximations of polynomial optimization over compact semi-algebraic sets. In this paper, we show that, for convex polynomial optimization, the Lasserre hierarchy with a slightly extended quadratic module always converges asymptotically even in the face of non-compact semi-algebraic feasible sets. We do this by exploiting a coercivity property of convex polynomials that are bounded below. We further establish that the positive definiteness of the Hessian of the associated Lagrangian at a saddle-point (rather than the objective function at each minimizer) guarantees finite convergence of the hierarchy. We obtain finite convergence by first establishing a new sum-of-squares polynomial representation of convex polynomials over convex semi-algebraic sets under a saddle-point condition. We finally prove that the existence of a saddle-point of the Lagrangian for a convex polynomial program is also necessary for the hierarchy to have finite convergence.Comment: 17 page

    Convex Hulls of Quadratically Parameterized Sets With Quadratic Constraints

    Full text link
    Let V be a semialgebraic set parameterized by quadratic polynomials over a quadratic set T. This paper studies semidefinite representation of its convex hull by projections of spectrahedra (defined by linear matrix inequalities). When T is defined by a single quadratic constraint, we prove that its convex hull is equal to the first order moment type semidefinite relaxation of VV, up to taking closures. Similar results hold when every quadratic polynomial is homogeneous and T is defined by two homogeneous quadratic constraints,or V is defined by rational quadratic parameterizations.Comment: 11 pages, 3 figure
    corecore